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Abstract. This work focuses on the task of Mathematical Answer Re-
trieval and studies the factors a recent Transformer-Encoder-based Lan-
guage Model (LM) uses to assess the relevance of an answer for a given
mathematical question. Mainly, we investigate three factors: (1) the gen-
eral influence of mathematical formulae, (2) the usage of structural in-
formation of those formulae, (3) the overlap of variable names in answers
and questions. The findings of the investigation indicate that the LM for
Mathematical Answer Retrieval mainly relies on shallow features such
as the overlap of variables between question and answers. Furthermore,
we identified a malicious shortcut in the training data that hinders the
usage of structural information and by removing this shortcut improved
the overall accuracy. We want to foster future research on how LMs are
trained for Mathematical Answer Retrieval and provide a basic evalua-
tion set up1 for existing models.

Keywords: Mathematical Information Retrieval · Transformer-Encoders.

1 Motivation

Mathematical Answer Retrieval (Math AR) deals with the task of ranking a set
of answers for their relevance to a given mathematical question. As in general
Information Retrieval, Transformer-Encoder-based Language Models (LMs) are
part of the most successful approaches for Math AR [7, 21, 32], but are usually
applied as black box models. Recently, research has found that LMs adapted to
mathematics encode mathematical parse trees, namely Operator Trees, in their
contextualized embeddings [20]. However, when the model is probed for these
tree structures after it was fine-tuned on Math AR, the performance degrades. In
Fig. 1, we visualize how much structural information can be extracted from the
embeddings of each of the Transformer layers following the methodology of the
original authors. After the model was fine-tuned for Math AR (blue line), the
performance on the structural probing task was significantly lower in all layers
greater than 2. This finding demonstrates that the probe was less successful in
extracting structural information from the model’s embeddings after fine-tuning,

1 Link to repository: https://github.com/AnReu/math analysis
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Fig. 1: Layerwise results of an LM be-
fore and after fine-tuning on Math AR.
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Fig. 2: IG scores aggregated on ques-
tion tokens (red), and answer tokens
(blue).

which indicates that the structural information got lost during the fine-tuning
process, since the model “overwrote” it with other information about formulae.
Van Aken et al. [27] showed in a similar experiment that factual knowledge that
is not required for solving a fine-tuning task is lost after fine-tuning, while rel-
evant information is more extractable by their probe. Therefore, our question
here is which information on mathematical formulae instead got reinforced by
the model during fine-tuning on Math AR. Hence, the goal of this work is to
study how the LM that demonstrated the best ability for extracting structural
information of mathematical formulae, AnReu/math pretrained bert, is using
formulae when assessing the relevance of a mathematical answer. These insights
are then used to identify and verify shortcomings in the training and optimize
the model’s retrieval performance.
Before we begin, we motivate our methodology by performing an initial exper-
iment where we investigate whether the model considers formula token at all
during the retrieval process. Hereby, we utilize the Integrated Gradient (IG)
attribution method [25], which measures how much of the model’s prediction
can be attributed to which token. We use AnReu/math pretrained bert after
it was fine-tuned in a Cross-Encoder setup for Math AR using the ARQMath
data set [11] following the methodology of Reusch et al. [21]. Since cross-encoders
simply perform a classification on top of the [CLS] embedding of the LM, IG cal-
culates the importance of each token with regard to the class denoting that the
answer is relevant for the mathematical question. Similarly to prior work [31], we
break up the scores by query (here: question) and document (answer), but further
differentiate between token types of the answer to study whether the respective
formula parts are used for the relevance assessment. Transformer-interpret’s im-
plementation2 of IG is applied and we aggregated (mean and median) the top
50 answers for each topic for tokens that belong to the mathematical question,
the text part of the answer, and the mathematical tokens of the answer. The
results can be found in Fig. 2 where the proportion of IG scores for each part of
the input is plotted. It is visible that the model’s decision for the relevance score
is in part based on the answer and in part also based on the question, which is
as expected. The most important observation can be made when looking at the
IG scores on the formula tokens of the answer. Here, we can see that the model
indeed considers the formulae along with the textual part of the answer. Thus,

2 https://pypi.org/project/transformers-interpret/
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we can conclude that the model uses information from formulae when assessing
the relevance of an answer, but it is still an open question how the formulae are
used and to which extent the model is relying on this information.
Therefore, this work begins by further analyzing what influence formulae in the
answer have when the model assesses the relevance of an answer. Here, we inves-
tigate how much the retrieval performance degrades when the model has no or
limited access to formula information in the answers. Afterwards, we compare
the ability of the LM before and after fine-tuning on Math AR on the task of
predicting variables that occur in the token overlap of a question and an answer.
This task is motivated by the observation that several results, which had the
same structure as the formula in the question but no common variables, were
ranked low by the model, even though they were considered relevant by experts.
In contrast, non-relevant results, which shared the same variable names with a
different structure, were ranked high by the model. Hence, the model seems to
be biased towards answers that have a higher number of common variables with
the question. During training, it could have learned a malicious shortcut of only
considering the variable overlap and not the actual semantics of a formula. To
verify the insights from the first experiments described here, we construct two
additional training sets for fine-tuning. The first data set artificially adds the
mentioned shortcut, while the second completely removes it such that the model
has to focus on other features than the shortcut. By comparing the results of
the model on these two fine-tuning sets to the baseline data set, we can conclude
that the model indeed relied on this shortcut.
To summarize, this paper aims to contribute to the following: Our evaluation
shows that the model AnReu/math pretrained bert uses information from the
formulae when assessing the relevance of an answer given a question (Sec. 3), but
probing revealed that during fine-tuning, the importance of overlapping variables
between question and answers is reinforced (Sec. 4). We further demonstrate that
substituting variables in the fine-tuning set leads to an overall improved perfor-
mance in the Math AR task (Sec. 5).

2 Preliminaries

2.1 Related Work

To interpret the knowledge and skills Transformer-Encoder models learn during
training, several post-hoc techniques have been introduced. One of these tech-
niques is the probing classifier or the probe where a simple classifier is trained
in order to predict a certain property from the model’s learned contextualized
embeddings. If the classifier successfully predicts the property, sufficient infor-
mation about this property has to be encoded in the contextualized embeddings.
Therefore, one concludes that the model encoded or learned this property dur-
ing the initial training. For more details on probing, we refer the reader to this
survey [2]. The application of these probing classifiers for knowledge of retrieval
models was studied in previous research: Fan et al. [6] evaluated 16 different
tasks for natural language understanding while Van Aken et al. [27] probed for
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layer-wise information in question answering. Also, Zhan et al. [31] applied a
probing classifier for a model’s ranking performance on different layers. Wallat
et al. [29] studied which information can be extracted by a probing classifier de-
signed for factual knowledge before and after it was fine-tuned on a fine-tuning
task and found that the fine-tuning task forces the model to forget and reinforce
certain information.
In the context of mathematical models, [20] trained a structural probe to eval-
uate how much information on mathematical parse trees can be extracted from
the contextualized embeddings of math-adapted Transformer-Encoder models.
While several studies cover new data sets to inspect how well Transformer models
solve mathematical questions [8, 24, 5, 18], no research was specifically conducted
to analyze the layer-wise information of Transformer-Encoder models for Math
AR. In a similar way, previous research analyzed the IG attribution and the at-
tention patterns of BERT models for document ranking [31, 19]. However, since
the interpretability of attention is disputed [28], we refrain from using it. The re-
moval and scrambling of words have been used to study their effects on LMs [16,
17]. However, we apply these ideas to formulae in a mathematical context.

2.2 Fine-tuning Setup

Model Choice The recent series of ARQMath Labs [11–13] has moved more at-
tention to the development of Transformer-Encoder models that are adapted for
Math AR. During the course of the lab series, several teams adapted exisiting
Transformer-Encoder models that were originally pre-trained on natural lan-
guage, to the domain of mathematical documents [23, 22, 21, 15]. These models
use LATEX as the form of representing formulae. In contrast, other works make
use of (linearized) tree structures of mathematical parse trees to represent for-
mulae in their models’ input [32, 14]. Even though several Transformer-Encoder
models for mathematical documents have been proposed, this work analyzes the
model AnReu/math pretrained bert. We chose this model because the goal of
this work is to study which mathematical information is used when a model
assesses the relevance of an answer given a question, and this particular model
displayed the best results when extracting syntactic information from its con-
textualized embeddings [20]. In addition, this is also the BERT-based version of
the successful AnReu/math albert, which was the best performing cross-encoder
model in the ARQMath Lab 3 [21].

Training Details In order to perform Math AR, we train the models in a cross-
encoder setup [9], where a binary classification is used to assess if a given answer
addresses a mathematical question. Question and answer tokens are concate-
nated and provided as an input to the LM up to a limit of 512 tokens. A clas-
sification head (linear classifier) on top of the [SEP] token embedding is trained
to decide for either “relevant answer” or “non-relevant answer”. The question-
answer pairs we use are based on the official ARQMath 2020 corpus [11]. Relevant
answers are answers that a user posted in response to a mathematical question.
For each question, we use up to ten relevant answers or as many as the questions
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had if less were present. Non-relevant answers are sampled by chance from the
set of answers with at least one similar topic. Both classes, “relevant” and “non-
relevant”, are equally distributed among the 2.7 M pairs, of which 90% are used
for training and 10% for validation. The training and evaluation was performed
using Huggingface’s transformers library [30]. We followed Reusch et al. [21] for
pre-processing and hyperparameter settings, because this set up demonstrated
the most promising results in a cross-encoder set up.
The evaluation of our models is performed in the same way as for the ARQMath
Lab that provides 77 questions from 2019 with relevance judgment for several
answers annotated using pooling. Each of these questions is paired with every
answer from the corpus, then each pair is provided as input to the model. The
classification score for label “relevant answer” is used to rank the answers. We
follow ARQMath and evaluate the top 1,000 ranking answers for each topic us-
ing nDCG and the top 10 using precision. For each question from the evaluation
corpus, the organizers of the ARQMath Lab 2020 also divided the questions into
the three categories Formulae, Text, and Both indicating whether answering a
question depended on understanding mainly the question’s formulae, the natural
language text or both, respectively. During evaluation we will break down the
performance of our models by these categories.

Judged Evaluation The ARQMath Lab does not provide relevance judgments
for every answer regarding each question, but only for a small subset that was
annotated during the pooling procedure. Hence, there exists a large number of
answers that do not contain scores. When evaluating the performance of a model,
non-judged answers are removed and the nDCG and Precision are calculated only
on basis of the judged answers. However, evaluating the models on the entire set
of answers is costly. Therefore, in most cases evaluations on the Math AR test
set were performed only using judged answers meaning that for each question in
the test set only answers whose relevance was judged during the ARQMath Lab
were considered as candidates. When only comparing the approaches and models
in this paper, this is a valid approach since only using the judged answers does
not influence the ranking of the answers nor the relations between the scores
and the models. But we cannot compare these model results to the results of the
original ARQMath Lab because their ranking contains non-judged results which
were removed but still influence the ranks of relevant answers when computing
the metrics. Therefore, we provide an evaluation of the final models on the non-
judged test set using the original metrics as used in the ARQMath Lab (nDCG′

and p′@10) at the end of the work.

Significance Testing In order to compare models, we use the Almost Stochas-
tic Order (ASO) test [3, 4] as implemented by Ulmer et al. [26]. We compared
all pairs of models based on five random seeds each using ASO with a confi-
dence level of α = 0.05 (before adjusting for all pair-wise comparisons using the
Bonferroni correction). We report almost stochastic dominance (ϵmin < τ with
τ = 0.2) in all results sections.
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3 Usage of Mathematical Formulae for Answer Retrieval

First of all, we study if models fine-tuned for Mathematical Answer Retrieval
incorporate mathematical information at all, when determining the relevance of
an answer given a question. We start with three simple experiments where we
evaluate the results on the ARQMath 2020 test set when removing all mathe-
matical formulae (1) or when replacing each formula with a dummy expression
(2). Thereby, we identify if the models use the formulae at all when differentiat-
ing between answers. If the results on the modified two test sets are lower than
on the original test set, the models relies on the formula information to judge
the relevance. If the scores are higher than on the original test set, the formula
information might confuse the model or lead it in the wrong direction. Addi-
tionally, each formula in the test set is replaced by a string containing the same
tokens, but sorted (3), evaluating the usage of structural information. Thus, we
end up with three variants (1) - (3) of the test set, each enabling us to show a
specific aspect of the trained knowledge.

3.1 Experiment Setup

In these three experiments, we use the models trained by applying our baseline
setup as detailed in Sec. 2.2 and evaluate them in the same way. The only
difference compared to experiment (1), (2), and (3) is that we evaluate them on
a slightly modified test set as we will detail in the following section.
Each test set contains the same questions from the ARQMath 2020 test set along
with the same set of answers. Each question is paired with each answer from the
set of judged answers, which are provided by the organizer of the ARQMath Lab.
The unprocessed data is in XML format while each post is formatted in HTML.
The formulae are present in ⟨math⟩ containers and therefore easily removable.
For test set (1), we remove each mathematical formula entirely. Since this could
cause a break in the coherence of a post, we create test set (2) where each formula
is replaced by a+b. Because each formula contains now the same information, the
model cannot differentiate between two answers only on basis of these formulae.
For test set (3), we tokenized each formula using a LATEX tokenizer and sorted
the tokens. This way structural information can not be identified by the models.
An illustration of the applied test sets can be seen in Tab. 1.

3.2 Results

The results of the experiments on the three modified test sets as well as for the
default test set are displayed in Tab. 1. There is a visible and significant drop on
both metrics when comparing the default test set with each of the modified test
sets. The differences between test sets (1) and (2) are not significant. In addition,
we break the score down regarding the three dependency categories Formulae,
Text and Both (not in the table) for a more detailed analysis: The largest drop in
performance is as one would expect in the Formulae category (on average -0.23
on nDCG@1,000 on Formulae, -0.11 on Both and -0.04 in Text). This indicates
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Table 1: Results for all applied test sets including an example.

Test Set Example nDCG@1,000 p@10

Default How to simplify
∫ b

a
f(x)dx+... 0.6990 0.3733

No Math (1) How to simplify 0.5438 0.1349
Dummy Math (2) How to simplify a+ b 0.5309 0.1434
Sorted formulae (3) How to simplify ?(()) +

∫
ab... 0.5917 0.2221

that the model focuses more on mathematical formulae for questions where these
formulae are also more important to retrieve a relevant answer.
From these results, it can be inferred that formula information is used by the
models to determine the relevance of an answer since on both test sets the
metrics deteriorate in comparison to the default test set that contained formulae.
Because the formula information was not available in the two modified test sets,
the models had to rely on the textual information, which in some cases was not
sufficient to rate the answer accordingly. Since we now know that formulae are
actually beneficial to answer a question and are not random by-standing tokens,
we can investigate how they are used by the models.
Here, we can look at the scores for test set (3), which are between the ones of
the default test set and test set (1) and (2). This indicates that the model does
- in contrast to what Fig. 1 suggests - use some information on the structure of
formulae as the scores drop when the structure is removed. However, after sorting
the tokens of the formulae some information is still recovered and used to assess
the relevance of the answers given the questions. This can be inferred because the
model is able to better rank the test set (3) in contrast to test set (1) and (2).
A possible reason could be that the sorting destroys also simple relationships
such as operator-argument relationships, which could be used by a model to
identify common patterns such as f(x) or sin(π). Here, further investigations
are necessary to evaluate cases where the model uses structural information. We
have seen that some structural information is used, but the results suggest that
the model is also relying on other information, which is visible by the gap in
the scores between test set (3) and (2). Therefore, the next section will evaluate
another candidate for information the models might rely on: Variable Overlap.

4 Variable Overlap Prediction

The observation that question and answers, which are retrieved by the model,
share more common tokens than relevant answers from the test set in general
led us to investigate the variable overlap in answers that were ranked high by
the model in comparison to the overlap of variables in actual relevant answers.
The overlap of variables in the top 1,000 answers for ARQMath 2020 ranked by
AnReu/math pretrained bert was 50.0% while when only considering relevant
answers it is only 34.5%. The models seem to be biased towards answers that
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have a higher number of common variables with the question which it could have
learned during the fine-tuning. Hence, it is reasonable to investigate the model’s
ability of capturing which variables occur in both the question and the answer.
We train a probing classifier to detect common tokens between the two input
segments of the models and call this task Variable Overlap Prediction. As Sec. 1,
we evaluate the model’s performance before and after fine-tuning and compare
them to see if it learned to reinforce this ability or replace it by something else.
In the following sections, we will provide details on the data set and the training
of the probing classifier and analyze the results of our experiment.

4.1 Training Details

Our data set comprises pairs of formulae as input data and the labels indicating
the variables they have in common. The formulae are taken from the train and
test split of the MATH data set [8]. We randomly paired two formulae and
intersected their tokens. These intersection was then filtered for variables. We
chose the set of single letters in the Latin alphabet as variables, since Greek
letters or other variable names occurred only in less than 20 examples. Each
variable denotes a single class. If the variable is included in the overlap of the
two formulae, its class gets the label 1; if it is not present in the overlap, the label
for the class is set to 0. If the overlap of the two formulae contains another token
except of the variables, it was added as an instance of the fallback class “other”.
This class is needed when no variable overlap between the formulae is present,
but other tokens still overlap, e.g. a+ 1 and b+ 1. Therefore, each sample from
the data set consists of two formulae in LATEX and one Boolean vector with 27
dimensions denoting the labels of the 26 variables and the fallback class. The
training examples were selected from the train split of the MATH data set, while
the examples in the test set were selected from its test split and deduplicated
since formulae can occur in both splits. In total, the data set consists of 5k
formula pairs with their labels for training, 2k for validation and 10k for the test
set. As before, training and evaluation were performed using the transformers
library [30]. We conducted hyperparameter tuning using Optuna [1].
In order to probe the LMs for their information on variable overlap, we input
a concatenation of the two formulae in the model. On top of the [CLS] token
embedding of the respective layer, we train a classification head which consists of
a single linear layer. Identifying the variable overlap between the two formulae
is a multi class, multi label classification with 27 classes. The output vector
o ∈ [0, 1]27 of the model is trained to contain a value between 0 and 1 for each of
the 27 classes. oi = 0 if the ith variable is not present in the overlap, and oi = 1
if it is present.

4.2 Results

Fig. 3 shows the results for the [CLS] embedding of each layer, when evaluated
on the Variable Overlap Prediction task (the results for this section are shown in
solid lines, dashed are the results for Sec. 5). For each layer except the first two,
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Fig. 3: F1 Scores on Variable Overlap Prediction for each layer before and after
fine-tuning on the different Math AR data sets.

the difference between the fine-tuned model and the model before fine-tuning is
significant. It was possible to extract the information about the variable overlap
with the highest F1 score in Layer 6 and 11. The lowest scores receive Layer 3
for both setups.
This significant gap in almost all layers demonstrates that the information on
variable overlap between both segments is more easily extractable from the [CLS]
embedding. That indicates that fine-tuning reinforced this knowledge as it was
more useful or important for the model. It could be the case that the relevance of
a formula in an answer is determined only by judging the overlapping variables
between question and answer. This way the model would not learn to rely on
the structure of the formula, but only on the shallow feature of the names of
the variables. A probable reason for the model to learn such a shortcut, which
would make it easier for the model to receive a low loss during training, is that
the fine-tuning data is constructed in such a way. The data contains the same
amount of correct and wrong answers for each question. The correct answers are
the answers to that question provided by users of StackExchange. These answers
are likely to contain the same variables as the question since they refer to what
was written in the question. Wrong answers are sampled from the corpus. The
user who wrote these answers referred to other questions which in most cases
contained other variables. Therefore, the model only needs to learn to look at the
variables in question and answer. If the overlap is high, the answer is probably
one of the correct ones, while it is a wrong answer when the variables do not
match. However, we base this claim only on the observation of the gap in the
Variable Overlap results. In the next section, we will train two more models that
model the variable overlap between question and answer explicitly or not at all
to verify our claim.

5 Symbol-agnostic Training

To verify whether our models heavily rely on the shortcut of only considering
overlapping variables between question and answer when judging an answer’s
relevance, we construct two more training sets based on the initial training set.
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Table 2: Example data pairs for the three fine-tuning data sets.

Baseline Shortcut Symbol Agnostic

Question I have a question regarding this calculation: How can I expand (x+ 1) · y?

Correct The solution is x · y + y The solution is x · y + y The solution is c · r + r
Incorrect Let the probability P (x) Let the probability P (a) Let the probability P (a)

In the first modified training set, all examples adhere to the shortcut, which
means that all correct answers contain the same variables as the question, while
all incorrect answers contain other variables. During training, the model simply
needs to learn to look at the overlap between variables in questions and an-
swers to classify the relevance of an answer. We therefore call this fine-tuning
set “shortcut data set”. By evaluating models trained on this data set, we can
compare it against models trained on the baseline data set and analyze if the re-
naming leads to significant drops in performance. Furthermore, when rerunning
the evaluation of the variable overlap prediction we can see if the models trained
on the shortcut data set receive even higher scores. In addition to this first set,
we construct a training set where the models cannot learn the shortcut to look
only at the variable overlap, but instead - hopefully - capture more structural
information of the formulae. In this data set no overlapping variables exist be-
tween questions and answers and the model needs to focus on other features.
We compare the performance of models trained on this second data set, which
we call “symbol agnostic data set”, to models trained on the baseline data set
and the shortcut data set. If no significant differences can be found, the models
do not rely on the shortcut.
In the following, we will explain in detail how the data sets are constructed.
The models are trained in the same way as the baseline model in Sec. 2.2, but
with the modified fine-tuning data set. For each data set we train five models
with different random seeds. The evaluation of each sub-task is carried out as
outlined in the previous two sections.

5.1 Renamed Fine-Tuning Data Sets

The base for the two additional data sets is the baseline data set, which consists
of pairs of questions and answers, and their labels (“relevant” or “non-relevant”
answer). For each question, we tokenized3 the content of the math containers
in the underlying HTML and stored its variables. Each answer first remained
split into text and math container parts. We left the text parts as they were,
but tokenized the math container content. For the shortcut data set, we only
further processed the “non-relevant” answers. Here, we determined the overlap-
ping variable names with the variables from the question. The variables in both

3 We use a custom LATEX tokenizer, e.g., \sum ix i is tokenized as \sum i x i
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posts were renamed by other variables from the set of single letter variables from
a to z and Greek letters, both upper and lower case. From this set of variables,
we sampled randomly a variable name that was not contained in the question
and did not already exist in the post. All instances of overlapping variables were
renamed using this procedure. We kept the renaming consistent among all for-
mulae of an answer post. After the renaming was conducted, text and formula
parts were concatenated as in the baseline data set. The text and formula parts
of the correct answers were concatenated in the same way, but without renam-
ing. For the symbol-agnostic fine-tuning set, we follow the same procedure, but
rename all overlapping variables in “relevant” and “non-relevant” answers. It
should be noted, that the three sets, the baseline set, the shortcut set, and the
symbol agnostic set, contain the same question-answer pairs, only the variable
names differ. This way we minimize the influence of the concrete pairing of ques-
tions and answers and the influence of how the negative examples were selected.
An example of the fine-tuning sets is displayed in Tab. 2.

5.2 Results

Results of the models on Math AR on each of the test sets of Sec. 3 can be
seen in Tab. 3. Overall, the scores of the models trained on the three data
sets are relatively close in all three metrics and on all test sets. All models
show the same losses as the baseline model when removing, replacing, or sorting
mathematical formulae in the answers. However, on each data set and each metric
the symbol agnostic model demonstrates the highest relative and absolute losses
in comparison to the default test data, except for p@10 on the sorted formula test
set. For example, the relative loss on nDCG@1,000 when comparing the default
data set to the sorted data set is 15.35% for the baseline model, 15.55% for the
shortcut model, and 16.39% for the symbol agnostic model. We can therefore
conclude that the symbol agnostic model relied the most on formulae in the
answers when comparing it to the other models. Another possible explanation
for this behavior could have been that the symbol agnostic model learns to not
focus on formulae at all. But this would have led to a lower loss on the test sets
without formula information (No Math). Since this is not the case, we conclude
that the symbol agnostic models actually focus more on formulae. In addition,
eliminating the shortcut also led to the (significantly) highest results of this
model in both nDCG and p@10.
The F1 scores on the Variable Overlap task follow the same trend for the models
on all three data sets (dashed lines in Fig. 3). Nevertheless, it is noteworthy
that significant differences between the models trained on the symbol agnostic
data and the baseline and shortcut models exist in the layers 5 and 12. This
could indicate that in the later layers, where the information is needed by the
shortcut model, the symbol agnostic model does not rely on this information
and therefore use its capacities to encode other information in its embeddings.
Overall, our evaluation also showed that the differences between models trained
on the baseline set and the shortcut set are small and mostly not significant.
Especially on the Variable Overlap Prediction, there was not a single layer in
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Table 3: Results of the additional models on all test sets for Math AR, rows indi-
cate different test sets, columns indicate different fine-tuning data, All Answers
denotes the default test set including judged and non-judged answers.

Data Set nDCG@1,000 p@10
Baseline Shortcut Symbol Agn. Baseline Shortcut Symbol Agn.

All Answers 0.4487 0.4437 0.4559 0.3733 0.3656 0.3794

Default 0.6990 0.6943 0.7019 0.3733 0.3656 0.3795
No Math 0.5438 0.5440 0.5422 0.1349 0.1410 0.1360
Dummy Math 0.5309 0.5334 0.5302 0.1434 0.1374 0.1397
Sorted Formulae 0.5917 0.5864 0.5868 0.2221 0.2183 0.2259

which significant differences between the models were visible. We can therefore
conclude that the shortcut of only looking at the overlap of the variables in
question and answer, which we artificially introduced with the shortcut data
set, was already there and the baseline models learned to rely on it. That means
that training sets for Math AR that only consider correct answers from their
corresponding question will always contain the shortcut as long as the variables
are not renamed.

6 Summary

The goal of this paper was to investigate which factors Transformer-Encoder-
based Language Models rely on when they are employed for Mathematical An-
swer Retrieval. We developed an evaluation set up which includes a probing
classifier and three evaluation data sets for the retrieval task to study the usage
of formulae and their structural features as well as the overlap of variables be-
tween question and answer. In this study, we applied this evaluation set up to
the model AnReu/math pretrained bert.
Our analysis demonstrated that the model considers formula information when
assessing the relevance of an answer given a mathematical question. We further
showed that the model loses a significant part of its modeling capacities of struc-
tural relationships of formulae after being fine-tuned on Mathematical Answer
Retrieval. We attribute this to the fact that the fine-tuning data forces the model
to consider mostly the overlap of variables between question and answer formu-
lae, and not to use structural features. We verified this claim by demonstrating
that there are no significant differences between a model that is fine-tuned on
a data set that explicitly contains this malicious shortcut and the baseline data
set. Furthermore, by removing the shortcut from the data, we improved the re-
trieval performance of the model. Our evaluation set up can easily be applied to
further models for Mathematical Answer Retrieval and other fine-tuning tasks.
Even though we only studied a model trained in a cross-encoder set up, the
presented set up can also be used with ColBERT-based models [10] such as the
one presented by Zhong et al. [33].
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However, certain limitations still hold for our set up. All presented data sets on
ARQMath data only considered formulae which were originally enclosed in math
containers in the original HTML source, but users can also write formulae with-
out LATEX environments in their posts. These formulae would be unnoticed, since
we considered everything outside of math containers as text. However, the pro-
portion of unnoticed formulae is rather small, because the MathStackExchange
community moderates and corrects posts, which leads to a high data quality
in this regard. Nevertheless, it could still influence the results, since formulae
whose variables were not renamed could still be present in the symbol agnostic
fine-tuning set.
Future work should include further possible features that the models could use,
for example, the matching of topic categories (such as matrix calculus, proba-
bility theory, etc.) of question and answers or the interplay between formulae
and text. In this work, we only looked at overlapping variables between ques-
tion and answer. In addition, one could also investigate the degree to which
the tree distance between formulae in questions and answers is captured. The
identified shortcut of only looking at the overlapping strings between questions
and answers is most likely not limited to the formulas. The model might also
learn to look at reoccurring natural language tokens, because answers will prob-
ably pick up terms and phrases from the question text. Because this hinders
the model from learning to actually capturing the relevance between question
and answer, a similar counteraction as renaming the variables during training
should be conducted for the natural language text of the answers. Furthermore,
future research should identify the components in the model that correspond
to structural modeling, variable overlap or other features in order to gain more
insights about where in the model knowledge is stored. Overall, these insights
should eventually be used optimize to the fine-tuning procedure to train models
for Math AR which make use of formulas in a more meaningful way.
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