
Selma: A Semantic Local Code Search Platform

Anja Reusch, Guilherme C. Lopes, Wilhelm Pertsch, Hannes Ueck, Julius
Gonsior, Wolfgang Lehner

Database Systems Group, Technische Universität Dresden, Germany
{firstname.lastname}@tu-dresden.de

Abstract. Searching for the right code snippet is cumbersome and not
a trivial task. Online platforms such as Github.com or searchcode.com
provide tools to search, but they are limited to publicly available and
internet-hosted code. However, during the development of research pro-
totypes or confidential tools, it is preferable to store source code locally.
Consequently, the use of external code search tools becomes impractical.
Here, we present Selma1: a local code search platform that enables term-
based and semantic retrieval of source code. Selma searches code and
comments, annotates undocumented code to enable term-based search
in natural language, and trains neural models for code retrieval.

Keywords: Code Retrieval · Transformer Models.

1 Introduction

Software development plays a key role in many aspects of modern life. In this
context, platforms like StackOverflow.com play a huge role in the daily work
of software developers and researchers. According to a recent survey2, at least
80% of them visit Stack Overflow a few times a week, 50% even daily. This fact
points to the importance of code search for software development. Especially,
when new developers join existing projects, they undergo a steep learning curve,
since internal code is often not as easily searchable as well-known libraries. In
order to enable the search in these internal projects, online tools can usually not
be applied since the project and its code need to be kept confidential.
Therefore, we present Selma, a semantic code search platform that runs within
a local environment. Semantic code search refers to the task of using natu-
ral language to formulate a query in order to search in documents written in
source code. At its core, it consists of two code retrieval models, one traditional
BM25 method and a Transformer-Encoder [14]. Transformer-Encoder models,
of which BERT [2] is the most prominent approach, have already demonstrated
great success in modeling natural languages and were therefore incorporated into
current retrieval systems (for a survey, see [15]). Apart from natural language,
Transformer-Encoders were also trained for source code understanding [7, 4, 5,

1 Code and Videos: https://anreu.github.io/selma
2 https://survey.stackoverflow.co/2022/

2 Reusch et al.

11, 9]. Also, models using Transformer-Decoders for code were developed, for
which GitHub Co-Pilot3 is one example. These models are trained to generate
code given a prompt in natural language. We, however, want to rely on code
that is actually existent in the code base, and not on code that is only based
on some code snippets the model was trained on. In addition, a recent study
by Nguyen et al. [12] found that the generated code is written correctly in only
half of the evaluated cases. Therefore, we decided to combine CodeBERT [4], a
Transformer-Encoder trained for source code understanding instead of genera-
tion, with ColBERT [8] to enable fast retrieval times.
Selma also includes code expansion, where documentation is generated for un-
documented code snippets to enable natural language queries also for BM25.
Different configurations of retrieval mechanisms and indexes can be applied de-
pending on the code base and hardware setup. A preview of the platform can be
seen in Fig. 1. In the following, we will present a walk-through of the system from
the perspective of a user and provide an overview of the different components
Selma is built of.

Fig. 1: Screenshot of Selma. Fig. 2: Code expansion.

2 System Overview

In this section, we present the main features of Selma. Fig. 1 and 3 show screen-
shots of our platform.
The system first needs to be set up for a new code base. During the set up pro-
cess, a Git repository URL is entered, which will then be cloned automatically
(1). The user who sets up the system - usually an administrator - can decide
which of the two retrieval methods are used to build the index: the term-based
BM25 and the Transformer-Encoder-based CodeColBERT. The BM25 index is
built using the code snippet and its documentation as an index-able document,
while CodeColBERT is applied directly on the code snippets. Due to CodeCol-
BERT’s high code understanding capabilities, this index delivers the best results.

3 https://github.com/features/copilot

Selma: A Semantic Local Code Search Platform 3

Fig. 3: Result preview for the query “returns the average of an array of numbers”.

It requires, however, a GPU to run, which is why we also offer the BM25 index as
a second option. To provide semantic search even when using the BM25 index,
the administrator can choose to use Selma’s code expansion feature, which runs
two Transformer models that generate documentation. The system benefits from
the generated documentation since it expands the document by additional terms
that were originally not included in the documentation (see Fig. 2). Depending
on the chosen set up, in the background the BM25 index is constructed or the
CodeColBERT model is either trained or applied directly to compute and store
the index for the new repository. When adding a new repository, the administra-
tor can choose to add it to an existing index or to create the index from scratch.
When choosing an existing index, the settings of this index are applied to index
the new code snippets. After the index is built, the administrator selects an in-
dex (2) and a model (3). Now, the user of the system can enter a query in
natural language (4). They can also choose a query from the query bookmark
menu (5), which stores frequently executed queries. A screenshot of the results
page can be found in Fig. 3. For each result returned by the selected model, the
user can provide feedback on the relevance of the code snippet (6).

Pre-Processing After cloning a code repository, we use the tool Treesitter4 to
parse the code, split it into method level granularity and extract existing doc-
umentation. Tokenization is done by each method separately: For term-based
retrieval the internal tokenizer of PyTerrier is used. Each transformer-based
model uses its respective tokenizer.

Retrieval Methods As a base retrieval method, we employ BM25 as it is offered
as part of PyTerrier [10] with k1 = 1.2, k3 = 8, and b = 0.75. The code snip-
pets are concatenated with the documentation string to serve as documents.
We found that using the method name, the parameter names, and the returned
value as a representation for the code snippet works best. We chose ColBERT [8]
as our second retrieval method, because it combines the semantic modeling ca-
pacities of Transformer-Encoders with fast retrieval performance due to offline

4 https://tree-sitter.github.io/tree-sitter/

4 Reusch et al.

indexing. This is achieved by passing each document through the Transformer-
Encoder and storing its embeddings. At query processing time, the query is also
passed through the encoder to compute the query embeddings, which are then
used to determine the relevance between query and each document embedding.
The documents with the highest relevance scores are returned by the system.
As a base model for ColBERT we employ CodeBERT that models English and
six programming languages [4]. We fine-tune the model for code retrieval us-
ing the CodeSearchNet Data Set [6], where the documentation comment, which
describes a function, serves as the query and the method body of a code snip-
pet serves as the document. Negative examples are sampled randomly from the
entire corpus. Our CodeColBERT model can be used directly to index new doc-
uments, but it can also be adapted by further training on examples from new
repositories. In addition, if the user provides positive and negative feedback for
retrieval results, these can also serve as training examples. For retrieval, we use
the PyTerrier bindings for ColBERT.

Code Expansion Since not all code is always documented perfectly, Selma can
automatically add documentation for undocumented code snippets. The idea is
inspired by Nogueria et al.’s Doc2Query [13] where a query is predicted for a
given document. The predicted query is then appended to the documents which
is then indexed. Our idea is similar: We generate documentation strings that
will be included when indexing code snippets. This way we bridge the language
mismatch between query and documents. For documentation generation, we in-
clude two models in the system: CodeTrans [3] and PLBART [1], which are
both based on the Transformer architecture [14] and are trained on several tasks
dealing with source code. We use the models fine-tuned on code summarization
translating from source code to English. We provide the method body to the
models, which then produce a documentation string. This string is concatenated
with the method body to serve as the expanded document in the index. Experi-
ments on the CodeSearchNet Challenge verified that BM25 with Code Expansion
is almost on par with CodeColBERT while executing queries ten times faster.

3 Conclusion

This work presented Selma, a semantic code search platform designed for local
use. Its unique features are: term-based and neural code search, Code Expansion
facilitated by Transformer models, and an integrated user feedback for both
evaluation and refinement. We provide an already fine-tuned model5 ready for
immediate application in code search tasks without the need for further training,
but it can also be adapted to the code that needs to be searched. This work was
supported through grant 01IS17044 Software Campus 2.0 (TU Dresden) by the
BMBF. Furthermore, the authors are grateful for the GWK support for funding
this project by providing computing time through the Center for Information
Services and HPC (ZIH) at TU Dresden.

5 https://huggingface.co/ddrg/codecolbert

Selma: A Semantic Local Code Search Platform 5

References

1. Ahmad, W.U., Chakraborty, S., Ray, B., Chang, K.W.: Unified pre-training for
program understanding and generation. arXiv preprint arXiv:2103.06333 (2021)

2. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of
deep bidirectional transformers for language understanding. In: Proceedings of
the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). pp. 4171–4186. Association for Computational Linguis-
tics, Minneapolis, Minnesota (Jun 2019). https://doi.org/10.18653/v1/N19-1423,
https://aclanthology.org/N19-1423

3. Elnaggar, A., Ding, W., Jones, L., Gibbs, T., Feher, T., Angerer, C., Severini,
S., Matthes, F., Rost, B.: Codetrans: Towards cracking the language of silicon’s
code through self-supervised deep learning and high performance computing. arXiv
e-prints pp. arXiv–2104 (2021)

4. Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu,
T., Jiang, D., et al.: Codebert: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155 (2020)

5. Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., Zhou, L., Duan, N., Svy-
atkovskiy, A., Fu, S., et al.: Graphcodebert: Pre-training code representations with
data flow. In: ICLR (2021)

6. Husain, H., Wu, H.H., Gazit, T., Allamanis, M., Brockschmidt, M.: Codesearch-
net challenge: Evaluating the state of semantic code search. arXiv preprint
arXiv:1909.09436 (2019)

7. Kanade, A., Maniatis, P., Balakrishnan, G., Shi, K.: Learning and evaluating con-
textual embedding of source code. In: International Conference on Machine Learn-
ing. pp. 5110–5121. PMLR (2020)

8. Khattab, O., Zaharia, M.: Colbert: Efficient and effective passage search via con-
textualized late interaction over bert. In: Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information Retrieval.
pp. 39–48 (2020)

9. Liu, S., Wu, B., Xie, X., Meng, G., Liu, Y.: Contrabert: Enhancing code pre-trained
models via contrastive learning. arXiv preprint arXiv:2301.09072 (2023)

10. Macdonald, C., Tonellotto, N.: Declarative experimentation ininformation retrieval
using pyterrier. In: Proceedings of ICTIR 2020 (2020)

11. Neelakantan, A., Xu, T., Puri, R., Radford, A., Han, J.M., Tworek, J., Yuan, Q.,
Tezak, N., Kim, J.W., Hallacy, C., et al.: Text and code embeddings by contrastive
pre-training. arXiv preprint arXiv:2201.10005 (2022)

12. Nguyen, N., Nadi, S.: An empirical evaluation of github copilot’s code sug-
gestions. In: Proceedings of the 19th International Conference on Mining
Software Repositories. p. 1–5. MSR ’22, Association for Computing Machin-
ery, New York, NY, USA (2022). https://doi.org/10.1145/3524842.3528470,
https://doi.org/10.1145/3524842.3528470

13. Nogueira, R., Yang, W., Lin, J., Cho, K.: Document expansion by query prediction.
arXiv preprint arXiv:1904.08375 (2019)

14. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017)

15. Yates, A., Nogueira, R., Lin, J.: Pretrained transformers for text ranking: Bert
and beyond. In: Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval. pp. 2666–2668 (2021)

