
Pipeline Group Optimization on Disaggregated Systems
Andreas Geyer, Alexander Krause, Dirk Habich, Wolfgang Lehner

Database Systems Group
Dresden, Germany

first.last@tu-dresden.de

ABSTRACT
While hardware disaggregation is considered the "next big thing"
providing unique opportunities for database systems, the pipeline-
based execution model is state-of-the-art in modern query engines
on monolithic systems. Within this paper, we propose a lightweight
way of adapting this pipeline-based model to disaggregated mem-
ory systems to soften the inherent overhead induced by arbitrary
memory accesses. Instead of executing pipelines in strict isolation
including a pipeline-local data transfer, we group pipelines with
similar data access characteristics of concurrently running queries
into pipeline groups. Each such pipeline group is then executed sep-
arately, but shared data across pipelines within each group is only
transferred once from memory resources to compute resources and
potentially re-used multiple times. This method dramatically re-
duces redundant data transfers and – in combination with a suitable
caching strategy as well as a fast communication layer – increases
the performance significantly in comparison to traditional pipeline-
based execution of multiple queries.

1 INTRODUCTION
The pipeline-based query execution model is state-of-the-art in
modern query engines [3, 5, 8, 9]. Within this model, pipelines are
logical units of execution and each pipeline consists of multiple
pipeline-friendly operators with a pipeline-breaking (sub-)operator
at the end. While pipeline-friendly operators are able to produce an
output before the end of an input data stream is reached, pipeline-
breaking operators have to create an intermediate state and are only
able to produce the first output after all elements of an input stream
have been seen. Moreover, every pipeline consumes a set of data
(either a base table, a column or an intermediate) and produces a set
of data (usually another intermediate or – at the end – the result)
in a format optimal for subsequent pipelines. Thus, every query
execution plan consists of a set of pipelines and a list of pipeline
dependencies (usually reflected as precedence relationships [8]).

In this context, the query optimizer generates the (estimated)
cardinalities of individual pipeline fragments to come up with an
optimal plan (considering join orders and table access primitives) –
also including estimates for the final fragments of a pipeline deter-
mining the required size of the necessary intermediate. Taking both
inputs, the pipeline dependencies as well as the estimated size of
the output of a pipeline, into consideration, different pipeline execu-
tion schedules are possible. The scheduling and the management of
intermediates specifically (when, where, for how long, ...) has been

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2023. 13th Annual Conference on
Innovative Data Systems Research (CIDR ’23). January 8-11, 2023, Amsterdam, The
Netherlands.

On Demand
Without Caching

On Demand
With Caching

Prefetching
With Caching

Parallel Execution
Pref + Cache

0

2

4

6

8

10

12

14

Ti
m

e 
[s

]

Waiting Time
Working Time

Figure 1: Optimization potential compared to state-of-the-art
naïve pipeline processing. More details in Section 3.

recently discussed in [8]. As they have shown, a good ordering of
execution pipelines may lead to a memory-efficient query execution
plan. Moreover, [9] refined the pipeline-based execution model to
a chunk-based approach for multi-socket scale-up systems offer-
ing a high degree of parallelism with non-uniform memory access
(NUMA) behavior. In this approach, the input data of a pipeline is
partitioned into chunks, so that the chunks can be processed in
parallel (intra-pipeline parallelism) and the scheduling ensures that
worker threads work on NUMA-local data [9]. Additionally, [9]
demonstrated that a single pipeline-at-time processing fully utilizes
the whole system yielding the best query execution performance.

Contribution: In this paper, we are taking the next step and
investigate the pipeline-based execution model in the context of dis-
aggregated memory systems. In general, hardware disaggregation
is considered the "next big thing" [13] by separating potentially het-
erogeneous compute and memory components (usually in the form
of network attached DRAM) in large data centers. This allows an
independent scaling of compute and memory resources, but always
requires the explicit transfer of data from memory to the compute
resources. However, data transfer has been already identified as
one of the biggest challenges even in the presence of high-speed
interconnects and thus requires primary attention especially when
running data-crunching database systems.

We mainly focus on two main contributions within this paper:
First, to optimize the execution of concurrently running analyt-
ical queries, we introduce a lightweight optimization of group-
ing pipelines with similar data access characteristics, hence the
name pipeline groups. In more detail, we continuously batch a set
of queries, compile their pipelines with a state-of-the-art optimizer,
and finally orchestrate the resulting pipelines based on their data
access. Pipelines with shared data are executed together to avoid
the redundant data transfer. The potential performance benefits of
our approach are illustrated in Figure 1 where we execute just two



CIDR’23, January 8-11, 2023, Amsterdam, The Netherlands Andreas Geyer, Alexander Krause, Dirk Habich, Wolfgang Lehner

PU

Memory

Memory

CUs MUs

PU PU

PU PU PU

PU PU PU
Query 
Batch 

Query
Batcher

Q1

Q2

Q3

Pipeline
GrouperOptimizer Goals

Data
Transfer
Manager

Pipelines

Query
Optimizer

Scheduler Data
Transfer

Parameter 
Server

Pipeline Group Executor

Figure 2: Envisioned system design based on a disaggregated hardware environment consisting of clearly separated compute
units (CUs) and memory units (MUs). The MUs are responsible to store the primary business data, while the CUs provide
the necessary compute capabilities for query processing. Due to the separation of CUs and MUs, the required data has to be
transferred from the MUs to CUs for processing in this hardware environment. To optimize the execution of concurrently
running analytical queries, our pipeline group optimizes the necessary data transfer and pipeline execution in a holistic way.

simple pipelines accessing the same data: the leftmost bar shows the
time spent, when both pipelines are executed in sequential fashion
and both fetch their data on demand (no data reuse). In all cases,
the disaggregated memory systems are realized using two severs
with RDMA. While one server acts as compute resource executing
the pipelines, the second server only provides memory resources
for base data. Second to left, we display naïve caching, where pre-
viously fetched data is reused for the second pipeline. Our novel
approach and second contribution is shown with bars three and
four, where we issue data chunk prefetching for the whole pipeline
group. Obviously, reducing the amount of transferred data (caching)
yields a higher benefit, because network bandwidth is always lower
than the local memory bus. However, this effect can be enhanced
further by applying our pipeline grouping technique (first contribu-
tion). Clearly, executing both pipelines simultaneously (fourth bar)
leads to a slight increase in waiting time, since both have to stall
for the arrival of data. However, this allows a better interleaving
of data transfer and pipeline processing leading to the best overall
runtime.

Outline: The remainder of the paper is organized as follows: In
Section 2, we introduce our new pipeline group concept in more
detail. Then, we introduce our proof-of-concept implementation
including selected evaluation results highlighting the optimization
potential of our pipeline group concept in Section 3. Finally, we
discuss related work in Section 4 and close the paper in Section 5.

2 PIPELINE GROUPS
Resource disaggregation and a corresponding system design may
adhere to a multitude of parameters. Thus, we start with a descrip-
tion of our anticipated system design. Figure 2 depicts a related
sketch. To explicitly reflect the separation of compute and memory,
we assume the existence of dedicated compute units (CUs) as well
as memory units (MUs). While MUs feature high memory capacities
(DRAM, NVRAM, ...) with a limited amount of compute resources,
CUs provide a high amount of compute resources with a limited

Table B Table C

Table A

Queries Pipelines Pipeline
Groups

Pipeline Group
Dependency Graph

Figure 3: Example of a pipeline group schema.

main memory capacity. Thus, CUs are merely responsible for exe-
cuting queries, managing the lifecycle of intermediates and feeding
results to the clients. Base data has to be fetched from MUs.

In order to optimize the execution of concurrently running
queries on such disaggregated memory hardware settings, our sys-
tem design features a Query Batcher as central starting point
(cf. Figure2). The task of this Query Batcher is to collect a set of
queries and to trigger the joint execution. For this joint execution,
every query within a query batch is turned into a separate pipeline
execution graph (Figure 3) by a state-of-the-art optimizer. Generally,
pipelines may be divided in two categories: (1) starting pipelines,
without any dependency on intermediate data of other pipelines
(cf. 𝑃1, 𝑃2) and (2) intermediate pipelines, which have to wait until
some others have finished (cf. 𝑃3, it depends on both 𝑃1 and 𝑃2).
Obviously, the optimizer generates the data requirements for each
pipeline, i.e. which tables and attributes have to be loaded for sub-
sequent execution. The optimizer further annotates pipelines with
their expected output cardinality allowing to estimate the overall
memory consumption of individual pipelines.

Pipelines without dependencies or whose input requirements
are met can be executed concurrently, as their processing scope is
isolated by definition. Obviously, some pipelines may access the
same attributes and blindly executing them agnostic to the context
of concurrently existing pipelines within the same or within a query
batch may result in redundant data access (which is OK for local



Pipeline Group Optimization on Disaggregated Systems CIDR’23, January 8-11, 2023, Amsterdam, The Netherlands

memory but cruel for remote memory locations). To overcome that,
one of the optimizations is then to cluster pipelines with congruent
or somehow overlapping data requirements into groups. Similar
to the approach of group commits as proposed in [6], several data
requests of pipelines with similar data characteristics are grouped
together and executed like a group read. That means, intelligently
forming and subsequently executing pipeline groups allows us to
batch the access to the same data fromMUs and thus reducememory
transfers (transfer sharing).

As illustrated in Figure 3, a global pipeline group dependency
graph over all batched queries is constructed, which is subsequently
used to guide the join execution by processing one pipeline group
after another. To execute a pipeline group, the Scheduler has (i) to
assign pipelines to compute resources and (ii) to trigger the Data
Transfer Manager in order to fetch the required data from MUs.
Depending on the concrete implementation, the Data Transfer
Managermay need parameter for an optimal transfer. These param-
eters are provided by a Parameter Server. Nevertheless, handling
pipeline groups imposes a set of challenges:

Building. Identifying which pipelines across batched queries
should be clustered together in a group is not a straightforward
task. The most crucial criterion may be the amount of overlapping
data requirements following the main memory constraints of CUs.
Memory consumption of a pipeline is not solely influenced by its
output cardinality, but also intermediates, even if they are not ma-
terialized to the MUs. Thus, balancing the required data from MUs,
expected peak memory consumption and the amount of pipelines
in a group is just as important.

Scheduling.Allocating enough compute resources for all pipelines
in a group has to consider several aspects. The first is accounting
for intra- and inter-pipeline parallelism. Depending on the actual
operator code, some pipelines may not exhibit internal data de-
pendencies and thus allow for concurrent loop processing, e.g. via
OpenMP. The second aspect is data availability. If the first data re-
quirement of some pipelines differs, some pipelines may be started
later than others to prevent network congestion and idle time of
compute resources.

Caching. Eliminating redundant data accesses can improve both
waiting and hence query processing time, as illustrated in Figure 1.
Considering our system design, caching can be performed on a vary-
ing granularity: per pipeline-group to avoid redundant concurrent
data fetching, per query batch (i.e. for all pipeline-groups of a batch)
or even leverage historic information by identifying frequently used
data over a certain amount of previous query batches.

Resource Adaptivity. Naturally, deferring the execution of
pipelines to reduce network traffic as described above raises the
question if resources should be suspended, e.g. to save energy or
reduce the overall TCO. Hence, resource adaptivity implies the
existence of a cost model, that incorporates the expected data paral-
lelism for concurrent pipeline-groups, the latency of disabling and
enabling certain resources as well as the possibility to cache base
data and intermediates from finished pipeline groups.

Further, computation can be pushed to the storage or network
layer by leveraging intelligent network cards, i.e. Smart NICs, FP-
GAs or through our notion of an MU, which already comes with an
attached CPU. The identification of pushable code, like common
predicates of pipelines is certainly a costly and time intensive task,

which can be considered a form of Multi Query Optimization. In
this paper, we focus on the building of pipeline groups and leave
general operator pushdown for future work.

3 PROOF OF CONCEPT EVALUATION
To show the efficiency and applicability of our system design includ-
ing the pipeline group optimization, we implemented a prototype
from scratch in C++1. Our experimental evaluation for this paper
was conducted on an emulated disaggregated memory system con-
sisting of two servers, where Server 𝑆1 plays the role of a CU and
Server 𝑆2 plays the role of an MU. While Server 𝑆1 – the CU – is
equipped with four Intel Xeon Gold 6130 with up to 3.7GHz, Server
𝑆2 – the MU – is equipped with four Intel Xeon Gold 5130 with up
to 3.2GHz. Both servers feature a Mellanox ConnectX-4 card with
up to 100GBit/s and are connected via InfiniBand. These cards (or
RNICs) are directly connected to NUMA socket 0 of either server
and thus, to cope with unwanted NUMA-effects, we use numactl to
force thread and memory assignment to socket 0. Every experiment
was repeated 5 times and we report the median runtimes.

As communication layer, we leverage single-sided RDMA verbs
(RDMA_WRITE) via Infiniband and multiple send (SB) and receive
buffers (RB) on each server to perform well-known double- or
multi-buffered data exchange. Whenever the requested data does
not fit into a single send buffer, it is split into multiple smaller
packages, that are enriched with meta data and then sent to the
requesting server. We observed that a single sender/receiver thread
is unable to saturate the available bandwidth and thus we employ
one thread per buffer. To handle the disaggregation-simulation
through RDMA, we need to copy received data packages from the
RDMA buffer to another location, where it can then be consumed
by the CU. Preliminary experiments revealed, that 512 KiB sized
SBs and RBs yield the overall best performance for transmitting
both smaller and larger data chunks, hence we use this size for our
experiments, if not stated otherwise.

We experimented with columns containing 2M, 20M, 200M and
400M randomly generated uint64_t values each. However, while
the size of the data set influenced the absolute numbers, the overall
proportions did not vary greatly. Thus, we present the results for
200M values or 1.5GiB per column.

3.1 Single Pipeline-at-a-Time
The baseline of our experiments is the local execution of each
pipeline. This means the data is completely held in the main mem-
ory attached to the socket of the working thread on the CU and
therefore, this is the fastest way of accessing the data. Realisti-
cally, this is the fastest approach, since data cannot be streamed
without any delay from a remote source, e.g. an MU, into the local
cache of the CU. We then repeated this experiment in a NUMA
setting, by pinning the processing threads to NUMA socket 0 and
placing the data set on NUMA socket 1, i.e. forcing a NUMA hop
during the processing. This setting gives us a good indication of
the target performance for the RDMA measurements. Since both
RNICs are connected to socket 0 of either system and the process-
ing/transferring threads are also forced on socket 0 via numactl, we

1https://github.com/alexKrauseTUD/memoRDMA and https://github.com/
alexKrauseTUD/dataProvider

https://github.com/alexKrauseTUD/memoRDMA
https://github.com/alexKrauseTUD/dataProvider
https://github.com/alexKrauseTUD/dataProvider


CIDR’23, January 8-11, 2023, Amsterdam, The Netherlands Andreas Geyer, Alexander Krause, Dirk Habich, Wolfgang Lehner

128.0 KiB 512.0 KiB 2.0 MiB 8.0 MiB 32.0 MiB 128.0 MiB
Chunk Size

0
1
2
3
4
5
6
7
8

Pr
oc

es
sin

g 
Ti

m
e 

[s
]

Local
NUMA
Remote Column

Chunked On-Demand
Chunked Prefetch

Paxed On-Demand
Paxed Prefetch

(a) All approaches

64
 Ki

B

12
8 K

iB

25
6 K

iB

51
2 K

iB
1 M

iB
2 M

iB
4 M

iB
8 M

iB
16

 MiB
32

 MiB
64

 MiB

12
8 M

iB

Chunk Size

64 KiB

128 KiB

256 KiB

512 KiB

1 MiB

2 MiB

Bu
ffe

r S
ize

2.7 2.3 2.1 2 2 2 2.1 2.1 2.1 2.1 2.1 2.2

2.3 2.3 2 1.9 1.8 1.9 1.9 2 1.9 2 2 2.1

2.5 2.1 2.1 1.9 1.8 1.7 1.8 1.9 1.9 1.9 2 2

3 2.2 2 2 1.8 1.7 1.7 1.7 1.8 1.9 1.9 2

4.2 2.8 2.1 2 2.3 2.1 2 2 2.1 2.1 2.2 2.2

6.8 4.2 2.9 2.1 2.3 2.3 2.1 2.1 2 2.2 2.2 2.2

2

3

4

5

6

(b) Heatmap of the pipeline runtime for the chunked approach with
prefetching

Figure 4: Single-pipeline experiment with different chunk sizes, with pipeline selectivity of 50%, 512 KiB buffer size, 2 RB, 2 SB
and 1 Thread each.

can interpret an RDMA transfer as a single NUMA hop but with
higher latency.

As for the data transfer granularity, value- or tuple-at-a-time is
undoubtedly not performant for accessing remote data as this would
incur more overhead then the actually sent data. Thus, we use the
naïve approach of requesting whole columns from the MU to serve
as a baseline for subsequent experiments with more fine grained
data transfer. After the request is sent, the CU waits until the whole
column is transmitted and starts the pipeline processing right after
the data is completely available in local memory. It is necessary to
wait for the complete column, as there is no guarantee in which
order the RBs are processed and thus we might encounter gaps in
the transferred data during processing. Naturally, this implies a lot
of waiting time for large columns.

For a more performant approach with less mandatory waiting
time, the column is requested as a set of independent column chunks.
These chunks can be of arbitrary size and hold the corresponding
amount of data of one column. Therefore, the approach of trans-
mitting the whole column at once is a special case of transmitting
only one chunk with the size of the whole column. To find the
best performing chunk size, we thoroughly test several sizes in the
corresponding experiments. Chunking a column yields the benefit,
that the pipeline processing can start earlier, since less data has to
be transmitted. Further, this enables us to prefetch the next chunk,
while the pipeline is busy processing the already received one.

The actual prefetching is signaled every time, when the pro-
cessing of a new chunk starts. A dedicated core of the CU is then
activated to communicate with the MU and fetches the correspond-
ing data into the local memory. We rebuild a mirrored image of the
remote column and thus, the chunk is placed in the corresponding
consecutive memory region, according to its offset. In an optimal
setting, the processing of the local data takes longer than the copy
procedure. In that case, no memory stalls would happen, since the
new chunk is copied into memory, that is adjacent to the already
locally residing data. If the local processing overtakes the fetching

of the remote data, the processing core is sent to sleep via a condi-
tion variable and will be awaken, as soon as the chunk has been
transferred completely.

After receiving any processable data, our pipeline iterates over it
in a blocked scheme to achieve cache-friendliness.We identified that
iterating over batches of 64 KiB (or 8192 elements, if the data type is
uint64_t) yields the best pipeline performance. As a consequence,
regardless of the availability of more data, it is split up into blocks of
64 KiB for faster processing. However, even though this is applied
to the local (no data transfer) as well as the remote (data has to
be fetched) experiments, it does not affect the transmission of the
data, only the processing behavior of the pipeline. Consequently, if
chunked data transfer is used with a chunk size smaller than 64 KiB,
this also forces the block size to be equal to the chunk size.

Following the principle of PAX (Partition Attribute Across) as
introduced by [2], we also investigate a PAX-like approach. In this
transmission mode, we allow the CU to request multiple columns
at once and the MU will store as much data of each column into
a single SB as possible and all columns will have the same share
in such a package. As an example: given a pipeline, that requires
three different columns, an SB with the size of 1024 KiB and some
meta data of 4 KiB per package leaves 1020 KiB for all columns to
use. That means, every column can occupy 340 KiB per package.
For simplicity, we will label this approach as paxed from hereon.

All these approaches allow for two different data fetching modes.
The first is On-Demand, which means that the data is requested at
the moment it is needed and thus reflecting the traditional approach
when working on local memory where the data is immediately
available. The second is Prefetch, where the first data request is
submitted at the start of the pipeline, i.e. before the execution starts,
and the next piece of data is already requested while working on
the previously received one. The reason for this is to hide as much
of the latency introduced by the data transfer as possible. For these
experiments at most one chunk/paxed package was allowed to be
prefetched.

Both On-Demand and Prefetch were tested on different pipeline
types and we observe different results, depending on the complexity



Pipeline Group Optimization on Disaggregated Systems CIDR’23, January 8-11, 2023, Amsterdam, The Netherlands

0/3 1/3 2/3 3/3
Overlap

0
1
2
3
4
5
6
7
8
9

Pr
oc

es
sin

g 
Ti

m
e 

[s
]

Local
NUMA

Chunked Pipeline
Chunked Prefetch

Column Pipeline
Column Prefetch

(a) 4 pipelines executed sequentially with 4 threads for each pipeline

0/3 1/3 2/3 3/3
Overlap

0
1
2
3
4
5
6
7
8
9

Pr
oc

es
sin

g 
Ti

m
e 

[s
]

Local
NUMA

Chunked Pipeline
Chunked Prefetch

Column Pipeline
Column Prefetch

(b) 4 pipelines executed parallel with 1 thread for each pipeline

Figure 5: Two different pipeline group execution strategies with different amount of data overlap.

and selectivity of the respective pipelines. The experiments in this
paper are executed for pipelines, that are built from the following,
fairly simple query:

SELECT SUM(col2 * col3)
FROM data
WHERE col1 < n

In general, the results have shown, that more complex pipelines
tend to hide more of the latency than simpler ones, due to the
longer compute time. Nonetheless, we show our results for this
fairly simple pipeline type to demonstrate the possibilities even on
suboptimal workloads.

Figure 4a displays the influence of varying the chunk size on
the overall pipeline runtime. The local, NUMA, remote column and
paxed experiments are obviously not influenced by the chunk size
and thus straight lines, since the data can be directly accessed. As
expected, the local approach is unmatchable the fastest one and the
on-demand data requests are much slower as their corresponding
equivalent with prefetching. We derive a chunk size of 4MiB as the
local optimum from this experiment. That the chunked approach
is outperforming paxed might seem surprising at first. The reason
for this is that the most performant configuration of our RDMA
implementation is a buffer size of 512 KiB, while larger buffer sizes
perform significantly worse. As the optimal chunk size of 4MiB
implies, it is necessary to prefetch these 4MiB of data to hide as
much latency as possible. With the paxed approach we can only
prefetch at most 512 KiB divided by the number of columns for
every column, which is simply not enough data to keep the CU
busy until the next paxed message arrives. A larger buffer size
might solve this problem for paxed, but at the same time worsens
the performance of the underlying RDMA layer. We conclude that
the paxed approach does not work well with our transport layer
and is thus excluded from further experiments.

Figure 4b shows the pipeline runtime as a heatmap of the chun-
ked approach with prefetching, depending on a combination of
the chunk size and buffer size. The result is that the buffer sizes of
256 KiB and 512 KiB perform best. For the buffer size of 512 KiB the
chunk sizes of 2MiB, 4MiB and 8MiB perform similar with 4MiB
having the absolute best performance. Following these results, the

buffer size of 512 KiB is fixed for the next experiment and a chunk
size between 1MiB and 16MiB is further evaluated.

3.2 Pipeline Group
We now leverage our insights from the single pipeline experiments
and evaluate the behavior for pipeline-groups, as introduced in Sec-
tion 2, executed concurrently with multiple threads. Due to space
constraints, we will explain all setups but only discuss experiments
2○ and 4○ in detail and only briefly summarize 1○ and 3○. The first
experiment 1○ executes 𝑛 pipelines sequentially, i.e. with only one
thread working on the pipelines. This trivial execution is expectedly
also the slowest one. Experiment 2○ executes 𝑛 pipelines sequen-
tially but with 𝑛 threads working on a single pipeline concurrently.
This follows the approach from [9] where there is no pipeline par-
allelism, but each pipeline is executed with the available resources.
The third experiment 3○ executes 𝑛 pipelines with 𝑛/2 pipelines
in parallel and two threads working on each pipeline. This is a
hybrid approach between the second and the fourth experiment.
The fourth experiment 4○ executes 𝑛 pipelines in parallel with one
thread per pipeline. This approach is orthogonal to [9] with full
inter-pipeline parallelism, but no intra-pipeline parallelism.

The target is to group pipelines with similar or equal data needs
together to minimize data transfer and optimize data requests. For
such a pipeline group it is possible to request all necessary data
upfront and therefore, request columns only once, even if they are
needed for several pipelines. Additionally, it enables to prefetch
the data before even entering the pipeline execution. Hence, we
need to slightly adapt our labeling for Figure 5. For a single pipeline
execution (cf. Section 3.1) "prefetched" meant that the pipeline
decides whether and when to request data. For a pipeline group
"prefetched" means that the group optimizer decides when data
requests are executed and "pipeline" means the pipeline decides. As
outlined in Section 2, we now cache the requested data during the
processing of the whole pipeline-group.

Figure 5a depicts experiment 2○ for 𝑛 = 4. If the pipelines in a
group exhibit no overlap (0/3), the execution time is significantly
longer compared to local and NUMA execution. No overlap implies
the transmission of 12 individual columns, each with 1.5GiB of size.



CIDR’23, January 8-11, 2023, Amsterdam, The Netherlands Andreas Geyer, Alexander Krause, Dirk Habich, Wolfgang Lehner

This result also represents the traditional, isolated execution of 4
pipelines. In this case the same three columns would be transmitted
for each pipeline execution again. With increasing overlap, both
lines for local and NUMA stay on the same constant level. This is
due to the fact, that for these approaches the data is already locally
available and the local memory controller is not saturated with
the data access. For the remote approaches on the other hand, the
amount of overlapping columns has a big impact on the perfor-
mance. The overlap of 1/3 means that each of the 4 pipelines share 1
column request. This allows to transmit only 9 individual columns
and therefore, save a total traffic of 4.5GiB. For an overlap of 2 and
3 columns the performance increases even further. With a complete
overlap of 3 columns for the 4 pipelines the data traffic is down to a
total of 3 columns and therefore, 4.5GiB to be transferred. Nonethe-
less, we can still not reach the performance of the experiment with
one NUMA hop. This is due to the fact that the data is much faster
processed with 4 threads than it is transmitted.

In Figure 5b the corresponding graph for experiment 4○ is shown.
Again, we observe increasing performance with an increasing over-
lap of shared columns. For this experiment the lines for local and
NUMA drop slightly for full overlap. We argue that this effect
stems from a better exploitation of the hardware prefetcher, since
all threads work on the same data and thus fewer cache thrashing
occurs. It is worth mentioning that the absolute times for local as
well as for NUMA are slightly worse than for experiment 2○. This
follows the results of [9] where it is shown that executing pipelines
in parallel is less beneficial than executing the pipelines sequen-
tially but with all available resources. For the remote approaches
it is evident that for full overlap the chunked approach gets very
close to the desired NUMA performance. As an interesting note,
remote chunked prefetch with full overlap is slightly faster than
NUMA with less than full overlap.

Both Figures 5a and 5b show that the implemented prefetching
is not beneficial for the chunked approach. Experiments 1○ and
3○ are not displayed as both performed worse than 2○ and 4○.
For experiment 1○ this is expected but for experiment 3○ a small
surprise. We found that the design of experiment 3○ amplifies the
observed negative effects of experiments 2○ and 4○ and thus is not
a favorable execution mode. All experiments were also executed
with more threads and more data, however we observed the same
behavior as for the already presented experiments and thus omit
these numbers.

We could show that our approach of grouping similar pipelines
together is very beneficial if there is some overlap in the needed
columns. One of our configurations with full data overlap could
even approximate the performance of NUMA with one hop, but
with partial overlap. We anticipate that with more optimizations,
e.g. in the RDMA layer, our chunked approach is able to compete
with one-hop NUMA. On the other hand, it is also shown that no
grouping of any kind results in a serious performance degrade.

4 RELATEDWORK
Disaggregated systems revolutionize the design and architecture of
modern database systems and thus database researchers have just
started to investigate the potential implications for such a novel
hardware model. For example, [13] discusses the general impact
and infer a new architecture as well as database primitives. We fully

agree that disaggregation leads to an alteration of traditional query
handling and thus we focus on optimizing an already well known
processing model to cope with the new disruptive hardware trend.

This goes hand-in-hand with Teleport [14]. The authors observe
that the high network latency of ’remote’ accesses is impacting
data intensive systems and thus opt for compute or operator push-
down. We see this as a potential future but orthogonal optimization
that can be incorporated into our pipeline group concept. Moreover,
there already exist system prototypes like LegoOS [11], PolarDB [4],
Farview [7] and more emerge. LegoOS tackles the operating system
side for steering and controlling the actual hardware components,
which is an extremely interesting feature for elasticity, but orthog-
onal to our proposed concept of pipeline groups and prefetching.
PolarDB – very similar to our architectural blueprint – plans with
separate compute nodes but attributes the remainder of the re-
sources to individual pools. We argue that having a dedicated MU
with individual compute resources yields its benefits. Traditional
NUMA systems followed the trend of moving the computation to
the data, similar to the Near Memory Processing paradigm. With
our dedicated MUs, we preserve the opportunity of optimizations
as, e.g. operator push down. Farview’s on-demand provisioning of
compute nodes paired with the FPGA-controlled storage serves as
a general inspiration for our work. However, Farview considers the
execution of individual pipelines, which is contrary to our pipeline
group approach which tries to co-execute pipelines with overlap-
ping data access requirements and can thus exploit data caching
and prefetching for a given query batch. Hence, our pipeline group
approach follows the general idea of cooperative scans [10], but it
is adopted to fit to the architecture of disaggregated systems.

On the one hand, recent work also has just shown the viability of
CXL-attached main memory [1]. Our prototype implementation is
currently based on one-sided RDMA verbs, but our memory access
layer is already prepared to also work with memory via CXL as soon
as we have access to corresponding hardware. On the other hand,
DFI [12] is a framework to efficiently exploit high-speed networks,
such as Infiniband. They show that adding an abstraction layer
on top of RDMA verbs does not impose a significant performance
degrade. However, their experiments are tailored towards tuple-
based data processing, whereas we focus on column- or batch-
oriented data transfer.

5 CONCLUSION
In this paper, we introduced our vision of a DBMS-friendly sys-
tem architecture for disaggregated hardware with the separation
into CUs and MUs. Based on this architecture, we see the biggest
challenge in optimizing the data transfer over the network layer
between MUs and CUs. For this, we investigated the state-of-the-art
pipeline-based execution model of modern query engines. With a
selection of experiments, we substantiated our claim that the state-
of-the-art pipeline model is not working that well on disaggregated
hardware systems. To overcome that, we have shown that there
is a lot of optimization potential when grouping pipelines with
similar data access characteristics together. This optimization can
significantly reduce the redundant data transfer via network and
therefore, increase the overall performance of the system. With
simple optimizations for the pipeline group execution, we already



Pipeline Group Optimization on Disaggregated Systems CIDR’23, January 8-11, 2023, Amsterdam, The Netherlands

came close to the performance of a standard scale-up system with
NUMA distance between the data and the processing threads.

Future Research Topics
In the future, we will fine-tune our concept for different opti-
mization goals and we expect to increase the performance further.
Within our shown system architecture in Figure 2, we have already
shown several components that are necessary for our pipeline group
approach. Nonetheless, we are currently only at the beginning
of our research for several of these components. For the Query
Batcher, the Pipeline Grouper, as well as the components of the
Pipeline Group Executor, we used rather basic approaches and they
will be extended as follows:

Query Batcher. At the moment, we imply a strategy of batching
all queries arriving in a defined time. However, this is only the
most simple approach and there is a multitude of other strategies
possible. It might even be necessary to find a way to adapt the
batching strategy depending on the workload.

Pipeline Grouper. Similar to the Query Batcher, we also used
a rather simple approach for this component and grouped the
pipelines by their highest overlap in data need. With growing work-
loads and more queries being processed, this simple strategy might
not be applicable anymore or needs at least to be refined. However,
also other strategies for grouping the pipelines not only or not at
all on their data need might be relevant for example for better load
balancing.

Pipeline Group Executor. This component has already some
work done with our research on different data transfer techniques
presented in this paper. Although, there is still room for improve-
ment as already mentioned throughout this paper. Additionally,

topics like scheduling or work as well as data placement are not
researched by us at all at the moment and therefore, leave a lot of
possibilities open.

These three components will form the core of our next research
steps. However, there are also a lot of other possible improvements
and steps. Therefore, feel free to reach out to us for a discussion of
proposed pipeline group topic.

REFERENCES
[1] M. Ahn et al. Enabling CXL memory expansion for in-memory database man-

agement systems. In DaMoN, pages 8:1–8:5, 2022.
[2] A. Ailamaki et al. Weaving relations for cache performance. In VLDB, pages

169–180, 2001.
[3] P. A. Boncz et al. Monetdb/x100: Hyper-pipelining query execution. In CIDR,

2005.
[4] W. Cao et al. Polardb serverless: A cloud native database for disaggregated data

centers. In SIGMOD, pages 2477–2489, 2021.
[5] P. Damme et al. DAPHNE: an open and extensible system infrastructure for

integrated data analysis pipelines. In CIDR, 2022.
[6] R. Hagmann. Reimplementing the cedar file system using logging and group

commit. In SOSP, page 155–162, 1987.
[7] D. Korolija et al. Farview: Disaggregated memory with operator off-loading for

database engines. In CIDR, 2022.
[8] L. Landgraf et al. Memory efficient scheduling of query pipeline execution. In

CIDR, 2022.
[9] V. Leis et al. Morsel-driven parallelism: a numa-aware query evaluation frame-

work for the many-core age. In SIGMOD, pages 743–754, 2014.
[10] L. Qiao et al. Main-memory scan sharing for multi-core cpus. PVLDB, 1(1):610–

621, 2008.
[11] Y. Shan et al. LegoOS: A disseminated, distributed OS for hardware resource

disaggregation. In USENIX ATC, 2019.
[12] L. Thostrup et al. DFI: the data flow interface for high-speed networks. SIGMOD

Rec., 51(1):15–22, 2022.
[13] Q. Zhang et al. Rethinking data management systems for disaggregated data

centers. In CIDR, 2020.
[14] Q. Zhang et al. Optimizing data-intensive systems in disaggregated data centers

with TELEPORT. In SIGMOD, pages 1345–1359, 2022.


	Abstract
	1 Introduction
	2 Pipeline Groups
	3 Proof of Concept Evaluation
	3.1 Single Pipeline-at-a-Time
	3.2 Pipeline Group

	4 Related Work
	5 Conclusion
	References

