
A Genetic-based Search for Adaptive Table

Recognition in Spreadsheets

Elvis Koci∗†, Maik Thiele∗, Oscar Romero†, Wolfgang Lehner∗

∗Fakultät Informatik

Technische Universität Dresden

Dresden, Germany

name.surname@tu-dresden.de

†Departament d’Enginyeria de Serveis i Sistemes d’Informació

Universitat Politècnica de Catalunya-BarcelonaTech

Barcelona, Spain

{ekoci, oromero}@essi.upc.edu

Abstract—Spreadsheets are very successful content generation
tools, used in almost every enterprise to create a wealth of
information. However, this information is often intermingled
with various formatting, layout, and textual metadata, making
it hard to identify and interpret the tabular payload. Previous
works proposed to solve this problem by mainly using heuristics.
Although fast to implement, these approaches fail to capture the
high variability of user-generated spreadsheet tables. Therefore,
in this paper, we propose a supervised approach that is able to
adapt to arbitrary spreadsheet datasets. We use a graph model to
represent the contents of a sheet, which carries layout and spatial
features. Subsequently, we apply genetic-based approaches for
graph partitioning, to recognize the parts of the graph corre-
sponding to tables in the sheet. The search for tables is guided
by an objective function, which is tuned to match the specific
characteristics of a given dataset. We present the feasibility of
this approach with an experimental evaluation, on a large, real-
world spreadsheet corpus.

Index Terms—Spreadsheet, Table Recognition, Graph Model,
Graph Partitioning, Genetic Search, Weight Tuning

I. INTRODUCTION

Spreadsheets are powerful content generation tools, assist-

ing novices and professionals alike. They contain data that

are roughly relational, but accompanied by various formatting,

layout, and textual metadata. Thus, spreadsheet contents are

designed primarily for human consumption, and often carry

implicit information. Due to these reasons, automatic table

recognition in spreadsheets has been a challenging task.

Particularly hard are the cases where multiple tables co-exist

with other non-table structures (such as lists and comments).

All together, these structures can be arranged in a variety

of ways within the sheet, increasing further the complexity.

In addition, we need to take into account the presence of

formatting and stylistic artifacts. For instance, the structure

of the individual tables can be distorted by empty cells, which

are used for visual padding or implicit/missing values.

Current solutions to these challenges, such as [1]–[3], are

mostly heuristics-based and limited by the imagination of

the domain experts creating the rules. Furthermore, these

rules need to be manually adjusted, before being utilized

This work is supported by the German Federal Ministry of Education and
Research (BMBF, 01IS14014A-D), by funding the competence center for Big
Data “ScaDS Dresden/Leipzig”

(transferred) in other datasets. Therefore, in this paper we

propose a mostly automatic approach, which is capable of

identifying near-optimum solutions, based on previously seen

examples (i.e., training on a sample of annotated sheets).

In detail, we propose an approach that adopts a graph

model to represent the contents of a sheet. Given this, the

identification process can be formulated as a search for the

optimal partitioning of the input graph, in which the resulting

parts correspond exactly to the tables of the sheet. We define

an objective function to determine the merit of candidate par-

titionings. This function is tuned to match the characteristics

of a given dataset. Finally, we use genetic algorithms [4], [5]

to search for the global optimum partitioning.

The subsequent parts of this paper are organized as follows:

We discuss the related work in Section II. Section III intro-

duces concepts used throughout this paper. In Section IV, we

formally define the proposed table recognition approach. Our

experimental evaluation is outlined in Section V. We conclude

this paper in Section VI.

II. RELATED WORK

There is a considerable number of works tackling layout

inference and table recognition in spreadsheets Here, we

mention those that are rule- and heuristics-based, like [2], [3],

[6]. Other works make use of domain specific languages, such

as [1], [7]. Recent publications apply to large extent machine

learning techniques [8]–[11], but the overall approach still

dependents on heuristics and/or generic assumptions. Instead,

we avoid any assumption with regards to the number of

tables, formatting, and arrangements in the sheet. Moreover,

to the best of our knowledge, we are the first to employ

genetic search and graph partitioning techniques for table

identification in spreadsheet documents.

It is worth mentioning works proposing methods dealing

with formula debugging in spreadsheets. At [12]–[14], similar

to us, individual cells and regions of cells are examined, with

the purpose of detecting logical errors in formulas.

The surveys [15], [16] provide a comprehensive summary of

table recognition techniques, for different document formats.

Authors of [17] discuss the use of genetic algorithms for image

enhancement and segmentation. Also, we single out [18],

A B C D E F G H I J K

1 Summary Sales 2017
2

3 Client Industry Country Contact
4 Bravo Retail Spain Juan García
5 Sonra Non Profit France Clément Dubois
6 Ambra IT Vietnam Pham Van Duc
7 Cheetah Retail China Li Wei
8

9

Month
Item

Total10
Monitor Mouse

Adapter
11 VGA HDMI
12 Items Code
13 April 500 200 85 785 Mouse ab2f
14 May 465 169 80 80 794 Monitor tb1f
15 Adapter 3rbz
16 June 422 163 90 44 719 VGA 3rbd
17 July 473 182 74 55 784 HDMI 3rbt
18 *Item Keyboard is omitted. See next sheet

(a) Original sheet

M

H H H H
D D D D
D D D D
D D D D
D D D D

H
H

H
H H

H
H H

H H
D D D D D D D
D D D D D D D D

D D
D D D D D D D D
D D D D D D D D

M

(b) Labeled Cells

M

H

D

H H

H
D D

D

D
D

D D

M

(c) Label Regions

H1

D1

H2

D2

H3

D6

D4

D5

H4

D8

D3

D7

(d) Sheet Graph

H1

D1

H2

D2

H3

D6

D4

D5

H4

D8

D3

D7

(e) Table Subgraphs

Fig. 1: Building the Graph Representation

which proposes a method for table recognition in document

images. It utilizes a graph model similar to the one in this

work, but the rest is based on rules and heuristics.

Finally, in literature there is a large body of publications

discussing graph partitioning. The surveys [19], [20] provide

an extensive review of existing techniques. At [21], they focus

entirely on the use of genetic algorithms for graph partitioning.

III. PRELIMINARIES

A. Label Regions

This work utilizes the concept of Label Region (LR) [2],

[3], which is a strictly rectangular area of a sheet, enclosing

adjacent non-empty cells, having the same layout role (label).

Figures 1 a-c illustrate the creation of LRs. We ensure

that each non-empty cell has a label and it belongs to one

and only one LR. Here, we use three labels: Header (H),

Data (D), and Metadata (M). Headers are the titles of the

columns, describing the values below them. Metadata cells

provide additional information about the sheet as a whole, or

about a subset of its values. Some typical examples are titles,

footnotes, and comments. Lastly, Data cells are the basic unit

of information. Unlike the other two roles, Data cells do not

describe values other than the ones they themselves hold.

The label of a cell can be determined using a classifier [9]–

[11]. Regardless of the algorithm, the cited works make use

of cell features such as style, formatting, content type, text

properties, formula references. On top of that, it is possible to

analyzing the nearby cells, to capture the surrounding context.

B. Graph Representation

At [3] we introduced a graph representation that captures

the spatial interrelations between the label regions (LRs) of a

sheet. In this work, we make use of the same representation,

but apply a different approach.

The nodes of the graph correspond to the LRs of the sheet.

Moreover, each node is annotated with features from the

corresponding LR, such as its label and coordinates (i.e., the

rows and columns that the region spans). Edges are introduced

for neighboring LRs that span the same column/s or row/s,

i.e., they partially or completely align, either horizontally

or vertically. Furthermore, these edges are enriched with

additional attributes, such as the direction of alignment and

the distance between the label regions. Figure 1.d illustrates

the graph representation for the example sheet on the left.

Edges connecting vertically aligned regions are dashed, while

those horizontally aligned are solid.

As can be seen in Figures 1.d-e, Metadata regions are

omitted. These regions, unlike Header and Data, can relate

to one or more tables. Understanding these relations requires

an analysis that goes beyond structure (which is the scope of

this work). Therefore, we do not consider Metadata regions

in the resulting graph model. Moreover, we omit them for the

rest of this paper, and we treat them as future work.

IV. PROPOSED APPROACH

As outlined by [19] and [20], graph partitioning and cluster-

ing are well studied problems with many applications. Using

the representation described in Section III-B, we formulate

the task of table recognition in spreadsheets (TRS) as a graph

partitioning problem (GPP).

The input for TRS-GPP is an undirected (sheet) graph G =
(V,E). Here, V is the set of nodes (label regions), and E is the

set of edges (spatial relations). We partition V into disjointed

subsets, where V1 ∪ ... ∪ Vk = V s.t. Vi ∩ Vj = ∅ for all

i 6= j. Typically, the number of partitions k for GPP is fixed

in advance [19]. This is not feasible in our case, since we are

not aware of the number of tables in the sheet, beforehand.

Thus, in this work, k can take any of the values in {1, ..., |V |}.

Intuitively, the overall goal of TRS-GPP is to find the

partitioning that uniquely and precisely distinguishes the true

tables of a sheet. We search for this on the basis of an objective

function (see Section IV-C), measuring the quality of any

arbitrary partitioning (i.e., a candidate solution). The search

procedure attempts to find the global optimum, which is the

solution with the best quality.

A. Header Groups

Before proceeding with the quality metrics, we introduce

the concept of Header group, denoted as H. Due to layout

artifacts, such as empty cells, a single table may contain mul-

tiple Header regions (e.g. the bottom-left table, in Figure 1).

Therefore, we create distinct groups of Headers, using the Data

rows as separators. In other words, Headers end up to the same

group, unless there is a data row between them.

We define the function hgps, which returns Header groups

for any arbitrary partition Vi. Clearly, if the partition does not

contain Headers, this function will return an empty set. In

other cases, we might get multiple groups, which we handle

as described in the following section.

B. Quality Metrics

In this section, we propose a set of metrics, to measure

the quality of a partitioning P = {V1, ..., Vk}. Intuitively,

this quality is directly related to the partitions that compose

P . Therefore, we define metrics that capture the appropriate

characteristics (related to being a table or not) for a partition

Vi ∈ P . We formulate these metrics such that they measure

negative properties, since we later use minimization to identify

the optimal solution. This means, the lower the metrics’ values

are, the more table-like are the partitions.

Below, we provide the formal definition of the proposed

metrics. We use the terms region and node interchangeably, to

refer to the original label regions (LRs). Additionally, we make

use of the following functions: data and heads , respectively,

to get the Data and Header nodes of a partition, area to get the

number of cells in a node (region), rows and cols to get the

set of row and column indices that the region covers, cwidth

to get the width of a column given its index, and rheight to

get the height of a row given its index.

M1-2. Negative Data/Header Alignment Ratio (ndar/nhar):

For a partition Vi, we measure the horizontal alignment of

Data with the top Header group (Htop). The latter has the

smallest row index, among all H in Vi.

For Data and Htop, the alignment ratio is high, when

they share most of their column indices. We inverse this

measurement, to capture the negative cases. Thus, the closer

the value is to one, the lower is the alignment. In the equation

below, ndar measures the ratio from the perspective of the

Data regions. Thus, we divide by |Cd|.

Cht =
⋃

v∈Htop

cols(v), Cd =
⋃

u∈data(Vi)

cols(u),

ndar =

{

1− |Cht ∩ Cd|
|Cd|

, if |Cd| ≥ 1 and |Cht| ≥ 1

0, otherwise

We use nhar to measure the alignment from the perspective

of Htop. Therefore, in this case, we would replace the fraction

below with: 1− |Cht ∩ Cd|
|Cht|

.

M3-4 Is Data/Header Partition (dp/hp): Notice that, for the

previous two metrics, we omit the cases where the partitions

contain either Data or Header, but not both. For these cases

we introduce two separate boolean metrics. Here, we illustrate

the calculation of dp. We handle hp, similarly.

dp =

{

1 if heads(Vi) = ∅ and |data(Vi)| ≥ 1

0, otherwise

M5. Is All In One Column (ioc): This is another boolean

metric. If Htop and Data cover altogether only one column,

ioc returns 1, otherwise 0. This metric pushes towards tables

that span at least two columns.

ioc =

{

1, if |Cd| = 1 and |Cht| = 1 and |Cd ∩ Cht| = 1

0, otherwise

M6. Count Other Valid Headers (#ovh): Besides Htop, there

might be other valid Header groups, in the partition. We

consider those valid that (cumulatively) span more than one

column. The presence of other valid H suggests multiple tables

in the same partition.

#ovh =
∣

∣{H ∈ hgps(Vi) \ H
top :

∣

∣

⋃

v∈H

cols(v)
∣

∣ ≥ 2}
∣

∣

M7. Data Above Header Ratio (dahr): Measures the portion

of Data cells found above Htop in a given partition. In

other terms, we identify Data cells with a row index less

than min
⋃

v∈Htop rows(v). Intuitively, for typical tables, it

is expected that all Data cells are below Htop. However, for

arbitrary partitions, especially in multi-table sheets, Data cells

could be found above it.

dahr =
#dcells above

∑

u∈data(Vi)
area(u)

M8. Average Width for Adjacent Empty Columns (avg waec):

We group adjacent empty columns, measure the commutative

width1 per group, and subsequently average the widths. In the

equation below, we denote as Cemt the list containing these

(aec) groups. Intuitively, this metric identifies empty columns

that act as separators of content. This could imply that some

nodes of the partition do not belong with others.

avg waec =

∑|Cemt|
i=1

∑|Cemt
i |

j=1 cwidth(Cemt
ij)

|Cemt|

M9. Average Height for Adjacent Empty Rows (avg waer):

The presence of empty rows, similar to empty columns, could

imply separation of contents.

avg waer =

∑|Remt|
i=1

∑|Remt
i |

j=1 rheight(Remt
ij)

|Remt|

M10. Overlap Ratio (ovr): Unlike the other metrics, this one

is calculated at partitioning level, P . We identify overlaps

between the individual partitions composing P , and measure

their area. We divide the sum of overlaps with the used area

of the sheet (i.e. the minimum bounding box enclosing all

regions). Below, Ci and Cj represent the sets of column

indices for partition Vi and Vj , respectively. Equivalently, for

row indices we use Ri and Rj .

ovr =

∑|P |−1
i=1

∑|P |
j=i+1 |Ci ∩ Cj | ∗ |Ri ∩Rj |

∣

∣

⋃

v∈V cols(v)
∣

∣ ∗
∣

∣

⋃

v∈V rows(v)
∣

∣

C. Objective Function

In Equation 1, we define the function measuring the fitness

of the individual partitions that comprise a candidate partition-

ing P = {V1, ..., Vk}.

fit(Vi,M,w) :=
9

∑

j=1

Mj(Vi) ∗wj (1)

As shown, the fitness for a partition Vi is calculated as a

weighted sum of metrics’ values. With M we denote the

1In Excel, column width is measured in units of 1/256th of a standard font
character width, while row height is measured in points

list of implemented metrics. In Equation 1, we use only the

first nine metrics, since these apply at the partition level (as

outlined in Section IV-B). While w is a vector that holds the

corresponding weights for the metrics.

obj(P,M,w) := w10 ∗M10(P) +
∑

Vi∈P

fit(Vi,M,w) (2)

Equation 2 provides the definition for the objective function.

We sum up the fitness of the individual partitions. Moreover,

we make use of the Overlap Ratio metric (M10), which is

calculated at the level of the partitioning.

D. Weight Tuning

One of the challenges of the proposed approach is deter-

mining the optimal weights for the objective function (see

Equation 2). Intuitively, some metrics are more crucial than

others. However, it is rather difficult to manually ascertain the

exact importance of each metric in relation to the rest. There-

fore, optimization algorithms are needed to tune the weights

automatically. Here, we make use of Sequential Quadratic

Programming (SQP) [22], for constrained minimization.

1) Tuning Sample: We tune the weights based on a sample

drawn from a dataset of sheet graphs (see Section V-A). The

intention is to guide the optimization algorithm in finding

weights that favor valid partitions, while penalizing false ones.

Therefore, for each one of the selected graphs, we determine

the target partitioning, which is the one that corresponds to the

true tables in the sheet. Furthermore, we randomly generate

multiple alternative partitionings (i.e., false instances).

2) Tuning Function: We denote the sample used for op-

timization as S = (U , T), where U holds all the generated

alternative partitionings, and T holds the corresponding target

partitionings (i.e., a one-to-one mapping).

argmin
w

|U|
∑

j=1

1 + obj(Tj ,M,w)

1 + obj(Uj ,M,w)
, such that: 0 ≤ w ≤ 103

The equation above defines the function used for weight

tuning. As can be seen, it is a summation of fractions, designed

for minimization. In most of the fractions the numerators will

get smaller values than the denominators (as mentioned in

Section IV-B, we measure negative properties). Regardless, we

still need to increase the gap between target and alternatives.

The challenge is to find weights that penalize alternatives,

without affecting many targets.

Note that we add +1 to denominators and numerators,

in order to avoid exceptions of division by zero, during

the automatic search for optimal weights. Furthermore, we

constrain the possible values for the weights in the interval

[0, 103]. This is to avoid extremely large or extremely low

weights, which might not be realistic, but rather reflecting the

peculiarities of the current sample.

E. Genetic Search

Given Equation 2, we are able to identify the fittest partition-

ing for each input sheet-graph. For small graphs (currently set

to ≤ 10 nodes), we perform exhaustive search. However, for

larger graphs a more efficient mechanism is required. For these

cases, we use genetic algorithms [4], [5], which can yield near

optimum solutions in reasonable time. In this work, we make

use of the edge encoding as described in [21]. We represent

the edges of an input graph with a boolean valued list of size

|E|. When the corresponding value is set to true, the edge is

activated, otherwise not. Dis-activating and re-activating edges

leads to various graph partitionings. Intuitively, edge encoding

ensures that we always get connected components of the input

graph. This is favorable, since it translates to partitions that

enclose neighboring regions, rather than arbitrary ones.

Nevertheless, there are challenges to this formulation. The

search space increases exponentially with the number of edges

2|E|. Thus, identifying the right combination of edges becomes

more demanding for larger graphs. We find such graphs (up

to 7, 484 edges) in our dataset. They occur due to many

implicit/missing values (empty cells) in tables, which inflate

the number of nodes (LRs), and with that the number of edges.

The pseudocode at Algorithm 1 describes the implemented

genetic search. An initial population, composed of boolean-

valued lists, is generated randomly. The size of this population

is not fixed, but rather calculated with a function, which takes

into account the number of edges in the input graph. In subse-

quent iterations, new individuals (Children) are created from

the population of the previous generation (Parents). This step

is performed using one of the following genetic operations:

random mutation (inverts boolean values of a Parent, with an

independent probability indpb = 0.1), and uniform crossover

(combines values from two Parents, with indpb = 0.5). We pick

individuals for the next generation with tournament selection

of size = 3, considering both Children and Parents. The

hallOfFame (hof) carries the individual having the smallest

score (i.e., the fittest) among all examined candidates.

We select genetic operators and parameter values following

recommended practices [23]. After extensive experimentation,

we favored those that push towards more diverse generations

(Children). In this way, we cover a larger search space and

decrease the chances of premature convergence.

Furthermore, we note the optional seed individual in Al-

gorithm 1. We adopt the heuristic approach proposed at [3],

to create this seed. It represents a good candidate solution,

Algorithm 1: Identifying the Optimum Partitioning

Input: sheet-graph: G = (V,E), metrics: M , weights: w, population size:

npop = ceil(log10(|E|) ∗ 100), #generations: ngen = 200,

crossover probability: cxpb = 0.5, mutation probability: mutpb
= 0.5, #offsprings to generate: λ = npop, #individuals to select:

µ = npop, and seed individual (optional)

Output: The partitioning with the lowest objective function score

1 begin

2 Pop← createInitialPopulation(G, npop, seed);

3 hof ← updateHallOfFame(Pop, G, M , w);

4 for i ∈ {1, ..., ngen} do

5 Children← createOffsprings(Pop, λ, cxpb, mtpb);

6 hof ← updateHallOfFame(Children, G, M , w);

7 Pop← selectFittest(Pop ∪ Children, µ, G, M , w)

8 return hof

which is fed to the initial population. Such hybrid approaches

are common in practice, as suggested by [24]. They often

yield better results than pure genetic ones. We make npop
2 − 1

copies of the seed, and apply random mutations on them, with

indpb=0.1. These copies, together with the seed, compose half

of the initial population. The rest is randomly generated.

V. EVALUATION

We perform 10-fold cross-validation, with 10 weight-tuning

rounds per training sample, followed by 10 runs of genetic

search for test graphs with |E| > 10. To ensure statistical

significance, we repeat the whole process three times. Each

time, we shuffle the dataset using a different (numeric) seed.

A. Annotated Dataset

The considered dataset2 is composed of files that were

randomly selected from the ENRON corpus [25]. For each

file, we annotate the first sheet (from left to right) containing

table/s. We skip sheets having transposed tables (i.e., header

on the left), and horizontally attached tables (i.e., no empty

column in-between them), as being outside of our scope.

In total, we annotated 674 single-table sheets, and 140
having multiple tables (refer to Figure 2.a). Overall, this

sums up to 1 158 annotated tables. In multi-table sheets, the

arrangement is predominantly vertical (top to bottom), but we

also find 34 with horizontal (left to right), and 17 having

both arrangements. Moreover, we notice empty columns (173
sheets) and empty rows (364 sheets) within tables, besides

those found between tables (respectively 51 and 102 sheets).

We generate two graph datasets. The first one, the gold

standard, contains the graphs corresponding to the annotated

sheets. The second one is a modified dataset, used only for

training, where 0.1% (min 1 cell) of the cells in the annotated

sheets are randomly re-labeled or omitted (i.e., induced noise).

Note that in this work we do not consider cell classification,

but rather work directly with the annotations. Furthermore, we

omit label regions (LRs) found outside of annotated tables,

when generating graph representations (refer to Section III-B).

B. Cross-Validation Folds

Having these datasets, we assess the performance via a 10-

fold cross-validation (CV). We ensure that multi- and single-

table graphs are balanced among the folds. With regards to

training, the modified dataset is an additional option. Each

iteration of the CV we train on the corresponding graphs

from the modified dataset, instead of the ones from the gold

standard. Nevertheless, testing still happens on the original

left-out fold. Intuitively, the second approach exposes the

tuning mechanism to small irregularities, to avoid overfitting.

C. Tuning Rounds

Before tuning the weights, we identify the target and

generate alternative partitionings for the training graphs (see

Section IV-D). We limit the number of alternative partitionings

2Refer to: https://wwwdb.inf.tu-dresden.de/research-projects/deexcelarator/

to 10 ∗#tables, per graph. This balances the contribution of

multi-table and single-table graphs in the tuning sample.

Furthermore, we ensure reliable weights by performing

10 rounds of tuning, each time generating new alternative

partitionings, from the training graphs. The weights, resulting

from different rounds, are averaged. For this, we consider

the error rate of each round, measured as the portion of

alternative partionings having a lower obj function value than

the corresponding targets. Altogether, rounds with higher error

rates contribute less to the averaged weights.

D. Search and Assessment

Figure 2.b shows the distribution of edge counts |E|, for

graphs in the gold standard. There are 380 (47%) graphs with

|E| in (0, 10], for which we use exhaustive search. For the

rest, |E| > 10, we apply genetic search.

While exhaustive search is deterministic, the genetic one

can return different candidate solutions, on multiple runs, for

the same input graph. Therefore, we perform genetic search

10 times, and then average the accuracy of the results.

The accuracy is assessed by comparing the target partition-

ing to the output (hof). For a pair, annotated (target) table and

hof partition, we calculate the agreement. We measure this

using the Jaccard index (i.e., #cells in common over #cells

in union). Subsequently, we identify the best match (highest

Jaccard index) for an annotated table. We mark as recognized

tables for which we find an agreement of ≥ 0.9. Note that

we consider from hof only partitions having both Data and

Header nodes. The rest we regard as non-valid candidates.

E. Evaluation Results

Table I summarizes the cross-validation results, which are

averaged for three runs (i.e., each time re-shuffling the dataset).

We start by discussing the first two approaches, heuristic (H)

and genetic-exhaustive (GE) search. The former has higher

accuracy with multi-table sheets, as it was designed for more

generic cases. For example, the heuristic approach treats all

empty columns as table separators, which is favorable when

multiple tables are arranged horizontally. Nevertheless, GE

performs significantly better on single-table sheets, since it

anticipates occasional irregularities inside these tables (e.g.,

missing values, empty columns/rows). At the same time, this

flexibility is disadvantageous for some multi-table sheets.

Besides that, our analysis revealed that the accuracy of GE

depends on the number of edges. Specifically, we determined

that GE achieves an accuracy of only 19% for multi-table

graphs with |E| > 100. However, for smaller such graphs,

with 10 < |E| ≤ 100 and |E| ≤ 10, the accuracy is notably

higher, at 81% and 97% respectively.

The introduction of noise (GE+N), during the tuning phase,

has a slightly positive effect for single-table sheets, but also

slightly negative for multi-table ones. We observe that the

induced noise leads to lower weights for “count other valid

headers” metric (M6), which causes some true Headers to be

interpreted as non-valid. Particularly, we notice a decrease in

accuracy for sheets with multiple vertically arranged tables.

(a) Multi-Table Sheets (b) Edge Counts (c) Horizontal Gaps

Fig. 2: Analysis of the Evaluation Results

TABLE I: % of Recognized Tables

ALL SINGLE MULTI

H 85.7 86.9 83.9

GE 84.1± 0.4 92.8± 0.1 72.2± 1.2

GE+N 84.3± 0.4 93.72± 0.2 71.3± 0.8

GE+H 89.0± 0.3 90.7± 0.2 86.6± 0.6

GE+N+H 89.6± 0.1 91.5± 0 87.0± 0.3

Feeding GE search with a heuristic seed leads to a con-

siderably higher number of recognized tables. This hybrid

method (GE+H) overcomes the drawbacks of the individual

approaches, to achieve noticeably better results for multi-table

sheets. Specifically, GE+H has an accuracy of 71%, 91%,

and 97%, respectively in multi-table graphs with |E| > 100,

10 < |E| ≤ 100, and |E| ≤ 10. Nevertheless, the seed can be

misleading in some cases, as we see the accuracy decreasing

for single-tables. To this aids the induced noise (GE+N+H),

improving the result for single-table sheets and overall.

In addition to the aforementioned, the heuristic seed speeds

up the genetic search. GE+H requires on average 4 genera-

tions to find the “best” candidate (i.e., hof does not change

afterwards) compared to 13 for GE. About 70% of the GE+H

runs determine hof from the first generation, since the seed

corresponds to the best candidate. For the rest, the search

proceeds to find other partitionings with lower (better) score.

We conclude this discussion, with an analysis of horizontal

gaps (i.e., adjacent empty columns), which we determined

to be the main factor for the remaining unrecognized tables.

We studied the width distribution for such gaps, inside and

between tables (in Figure 2.c, outliers >80 omitted). There is

a notable overlap between these distributions, suggesting that

width alone is not informative enough to recognized the true

horizontal table separators. In future works, we will consider

additional metrics to better capture the circumstances in the

sheet, allowing the approach to make more informed decisions.

VI. CONCLUSIONS

In this paper, we present our novel approach for table recog-

nition in spreadsheets. Unlike previous works, our method

requires little to no involvement of domain experts. Instead,

it adapts to specific spreadsheet datasets, based on a sample

of annotated files. We represent each sheet with a graph

model, which carries layout and spatial information about

the contents. On top of this, we define metrics to capture

the underlying table characteristics. These metrics become

an integral part of an objective function, which is tuned to

favor tables similar to the provided examples. Subsequently,

in the remaining sheets of the dataset, we recognize tables

by partitioning the corresponding graph representation. The

search is performed either exhaustively or with the help of a

genetic algorithm, depending on the size of the graph.

REFERENCES

[1] A. O. Shigarov and A. A. Mikhailov, “Rule-based spreadsheet data
transformation from arbitrary to relational tables,” Information Systems,
vol. 71, pp. 123–136, 2017.

[2] E. Koci, M. Thiele, O. Romero, and W. Lehner, “Table identification
and reconstruction in spreadsheets,” in CAiSE’17, pp. 527–541.

[3] E. Koci, M. Thiele, W. Lehner, and O. Romero, “Table recognition in
spreadsheets via a graph representation,” in DAS’18, pp. 139–144.

[4] C. M. Anderson-Cook, “Practical genetic algorithms,” 2005.

[5] D. E. Goldberg, Genetic algorithms. Pearson Education India, 2006.

[6] J. Eberius, C. Werner, M. Thiele, K. Braunschweig, L. Dannecker, and
W. Lehner, “Deexcelerator: A framework for extracting relational data
from partially structured documents,” in CIKM’13, pp. 2477–2480.

[7] F. Hermans, M. Pinzger, and A. Van Deursen, “Automatically extracting
class diagrams from spreadsheets,” ECOOP’10, pp. 52–75.

[8] Z. Chen, S. Dadiomov, R. Wesley, G. Xiao, D. Cory, M. Cafarella, and
J. Mackinlay, “Spreadsheet property detection with rule-assisted active
learning,” in CIKM. ACM, 2017, pp. 999–1008.

[9] E. Koci, M. Thiele, Ó. Romero Moral, and W. Lehner, “A machine
learning approach for layout inference in spreadsheets,” in IC3K: volume

1: KDIR. SciTePress, 2016, pp. 77–88.

[10] Z. Chen and M. Cafarella, “Automatic web spreadsheet data extraction,”
in International Workshop on Semantic Search over the Web, 2015, p. 1.

[11] M. D. Adelfio and H. Samet, “Schema extraction for tabular data on the
web,” VLDB’16, pp. 421–432.

[12] R. Abraham and M. Erwig, “Header and unit inference for spreadsheets
through spatial analyses,” in Visual Languages and Human-Centric

Computing (VL/HCC). IEEE, 2004, pp. 165–172.

[13] T. Schmitz, D. Jannach, B. Hofer, P. W. Koch, K. Schekotihin, and
F. Wotawa, “A decomposition-based approach to spreadsheet testing and
debugging,” in VL/HCC. IEEE Computer Society, 2017, pp. 117–121.

[14] R. Singh, B. Livshits, and B. Zorn, “Melford: Using neural networks to
find spreadsheet errors,” Tech. Rep., January 2017.

[15] R. Zanibbi, D. Blostein, and J. R. Cordy, “A survey of table recognition,”
Document Analysis and Recognition, vol. 7, no. 1, pp. 1–16, 2004.

[16] D. W. Embley, M. Hurst, D. Lopresti, and G. Nagy, “Table-processing
paradigms: a research survey,” International Journal of Document Anal-

ysis and Recognition (IJDAR), vol. 8, no. 2-3, pp. 66–86, 2006.

[17] M. Paulinas and A. Ušinskas, “A survey of genetic algorithms applica-
tions for image enhancement and segmentation,” Information Technology

and control, vol. 36, no. 3, 2007.

[18] M. A. Rahgozar and R. Cooperman, “A graph-based table recognition
system,” Document Recognition, vol. 111, pp. 192–203, 1996.

[19] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz, “Recent
advances in graph partitioning,” in Algorithm Engineering. Springer,
2016, pp. 117–158.

[20] S. E. Schaeffer, “Graph clustering,” Computer science review, vol. 1,
no. 1, pp. 27–64, 2007.

[21] J. Kim, I. Hwang, Y.-H. Kim, and B.-R. Moon, “Genetic approaches for
graph partitioning: a survey,” in GECCO’11, pp. 473–480.

[22] P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta

numerica, vol. 4, pp. 1–51, 1995.

[23] A. E. Eiben and S. K. Smit, “Evolutionary algorithm parameters and
methods to tune them,” in Autonomous search. Springer, 2011, pp.
15–36.

[24] C. Grosan and A. Abraham, “Hybrid evolutionary algorithms: method-
ologies, architectures, and reviews,” in Hybrid evolutionary algorithms.
Springer, 2007, pp. 1–17.

[25] F. Hermans and E. Murphy-Hill, “Enron’s spreadsheets and related
emails: A dataset and analysis,” in ICSE. IEEE Press, 2015, pp. 7–16.

