
Partitioning Strategy Selection for
In-Memory Graph Pattern Matching on

Multiprocessor Systems

Alexander Krause, Thomas Kissinger, Dirk Habich, Hannes Voigt,
Wolfgang Lehner

{firstname.lastname}@tu-dresden.de

Technische Universität Dresden
Database Systems Group

Dresden, Germany

Abstract. Pattern matching on large graphs is the foundation for a
variety of application domains. The continuously increasing size of the
underlying graphs requires highly parallel in-memory graph processing
engines that need to consider non-uniform memory access (NUMA) and
concurrency issues to scale up on modern multiprocessor systems. To
tackle these aspects, a fine-grained graph partitioning becomes increas-
ingly important. Hence, we present a classification of graph partitioning
strategies and evaluate representative algorithms on medium and large-
scale NUMA systems in this paper. As a scalable pattern matching
processing infrastructure, we leverage a data-oriented architecture that
preserves data locality and minimizes concurrency-related bottlenecks
on NUMA systems. Our in-depth evaluation reveals that the optimal
partitioning strategy depends on a variety of factors and consequently, we
derive a set of indicators for selecting the optimal partitioning strategy
suitable for a given graph and workload.

1 Introduction

Recognizing comprehensive patterns on large graph-structured data is a prerequi-
site for a variety of application domains such as fraud detection [11], biomolecular
engineering [8], scientific computing [13], or social network analytics [9]. Due
to the ever-growing size and complexity of the patterns and underlying graphs,
pattern matching algorithms need to leverage an increasing amount of available
compute resources in parallel to deliver results with an acceptable latency. Since
modern hardware systems feature main memory capacities of several terabytes,
state-of-the-art graph processing systems (e.g., Ligra [12], Galois [7] or, Green-
Marl [5]) tend to store and process graphs entirely in main memory, which
significantly improves scalability, because hardware threads are not limited by
disk accesses anymore. To reach such high memory capacities and to provide
enough bandwidth for the compute cores, modern servers contain an increasing
number of memory domains resulting in a non-uniform memory access (NUMA).

For instance, on a multiprocessor system each processor maintains at least one
separate memory domain that is accessible for other processors via a communica-
tion network. However, efficient data processing on those systems faces several
issues such as the increased latency and the decreased bandwidth when accessing
remote memory domains. To further scale up on those NUMA systems, pattern
matching on graphs needs to carefully consider these issues as well as the limited
scalability of synchronization primitives such as atomic instructions [18].

To scale up pattern matching on those NUMA systems, we employ a fine-
grained data-oriented architecture (DORA) in this paper, which turned out to
exhibit a superior scalability behavior on large-scale NUMA systems as shown
by Pandis et al. [10] and Kissinger et al. [6]. This architecture is characterized
by implicitly partitioning data into small partitions that are pinned to a NUMA
node to preserve a local memory access. In contrast to the bulk synchronous
parallel (BSP) processing model [15], which is often used for graph processing,
the data partitions are processed by local worker threads that communicate
asynchronously via a high-throughput message passing layer. Hence, the overall
performance of the pattern matching mainly depends on the graph partitioning.

In this paper, we systematically evaluate the influence of different graph par-
titioning strategies on the performance of pattern matching using a data-oriented
architecture. Therefore, we introduce a novel classification of graph partition-
ing strategies and evaluate performance aspects of representative partitioning
algorithms for each class. Our exhaustive evaluation on medium (4 sockets)
and large-scale (64 sockets) NUMA systems reveals that the selection of the
appropriate partitioning strategy depends on a multitude of factors such as graph
characteristics, query pattern, the number of partitions, and worker threads.
Thus, we argue that there is no one-size-fits-all strategy for partitioning graphs
within a NUMA system and identify key features that shall guide partitioning
strategy selection process.

Contributions. Our contributions are summarized as follows:

(1) We present a graph pattern matching processing model that is based on a
fine-grained data-oriented architecture that is designed to operate on large
scale-up NUMA systems (Section 2).

(2) We provide a classification of graph partitioning strategies that arranges
the individual strategies based on a partitioning criterion and a balancing
criterion. Moreover, we describe instances of the respective classes that we
consider for our evaluations (Section 3).

(3) We exhaustively evaluate our identified partitioning strategies for different
graphs and patterns on a medium and large-scale NUMA system and reason
about the results. Our investigations show that the optimal partition strategy
depends on a variety of factors (Section 4).

(4) Based on our evaluations, we derive a set of indicators that should be
considered in the process of selecting the optimal partitioning strategy for
pattern matching on graphs (Section 4.3).

Finally, we will give an overview of the related work (Section 5) and conclude
the paper (Section 6).

Message Passing Layer

Socket 1 Socket N
…

R
o
u
t
i
n
g

T
a
b
l
e

M
em

o
ry

M
em

o
ry

Result

Query PatternGraph

Fig. 1. Scalable graph pattern matching based on a Data-Oriented Architecture [6, 10].

2 Graph Pattern Matching on NUMA Systems

Within this paper, we focus on edge-labeled multigraphs as a general and widely
employed graph data model [8,9,11]. An edge-labeled multigraph G(V,E, ρ,Σ, λ)
consists of a set of vertices V , a set of edges E, an incidence function ρ : E →
V × V , and a labeling function λ : E → Σ that assigns a label to each edge.
Hence, edge-labeled multigraphs allow any number of labeled edges between a
pair of vertices. A prominent example for edge-labeled multigraphs is RDF [4].

Pattern matching is a declarative topology-based querying mechanism where
the query is given as a graph-shaped pattern and the result is a set of matching
subgraphs [14]. For instance, the query pattern depicted on the left hand side of
Figure 1 searches for all vertices that have two outgoing edges resulting in three
matching subgraphs for the given underlying graph. A well-studied mechanism
for expressing such query patterns are conjunctive queries (CQ) [17], which
decompose the pattern into a set of edge predicates each consisting of a pair
of vertices and an edge label. Assuming a wildcard label, the exemplary query
pattern is decomposed into the conjunctive query {(V1V1V1, ∗, V2), (V1V1V1, ∗, V3)}.

To scale up graph pattern matching on large multiprocessor systems, we
employ an approach that is based on a data-oriented architecture (DORA) [10],
which is known for its superior scalability on NUMA systems [6]. As illustrated on
the right hand side of Figure 1, the graph is implicitly split into a set of disjoint
partitions. Each partition is placed in the local memory of a specific processor that
runs workers on its local hardware threads. These workers are limited to operate
exclusively on local graph partitions and leverage a high-throughput message
passing layer for the inevitable communication. Only one worker is allowed to
access a partition at a time to avoid costly fine-grained lockings of the data
structures. Consequently, the number of workers is limited to the available local
hardware threads and the number of local partitions can be chosen arbitrarily. An
integral part of the message passing layer is the routing table, which keeps track
of the partitioning and thus, maps the partitioning criteria (cf., Section 3) to the
corresponding partition using a hash table. The overall goal of this architecture is
(1) to restrict the access of threads to data structures in the local main memory,

Edges (E) Vertices (V) Components (C)

Edges (E)
E/E Strategy

RR
E/V

not possible
E/C

not possible

Vertices (V)
V/E Strategy

BE/DS
V/V Strategy

RRV
V/C

not possible

Components (C)
C/E

unknown
C/V Strategy

k-Way
C/C

unknown

Balancing Criterion

Pa
rt

it
io

n
 C

ri
te

ri
o

n
G

ra
n

u
la

ri
ty

Fig. 2. Classification of graph partitioning strategies and representative algorithms.

(2) to reduce the necessity of locks or atomic instructions, and (3) to hide remote
memory latency using the high-throughput message passing layer.

To actually process conjunctive queries on such a data-oriented architecture,
the edge predicates – CQs are consisting of – are evaluated one after another.
Every time an edge predicate matches within a partition, a new message is
generated by the worker thread to evaluate the successive edge predicate unless
the predicate was the last one of the CQ. These messages are either sent to a
single partition (unicast) or to all partitions (broadcast) depending on the edge
predicate and partitioning criterion. Due to the topology-driven nature of pattern
matching and the comprehensive structure of graphs, the appropriate selection of
a partitioning strategy for a specific combination of query pattern and underlying
graph is crucial for such an architecture as we will show throughout this paper.

3 Graph Partitioning Strategies

In this section, we provide a classification of known graph partitioning strategies
and detail on our heuristic implementations of the individual strategies that we
consider for further evaluation. We restrict our considerations to partitioning
strategies that generate a disjoint set of graph partitions and leave redundancy
for future work. As shown in Figure 2, our classification spans two dimensions:
(1) The partitioning criterion that denominates the basic unit of the graph a

partitioning strategy is operating on.
(2) The balancing criterion describing the unit of the graph that is balanced to

achieve an equal utilization of the parallel compute resources.
For both dimensions those units are either fine-grained edges (E), vertices (V),
or coarse-grained components (C) naming a connected set of vertices. Hence, a
partitioning strategy is a combination of a partitioning criterion and a balancing
criterion. Partitioning a graph at a specific granularity implies that more coarse-
grained balancing criteria are not applicable (i.e., E/V, E/C, and V/C strategy).
To the best of our knowledge, there are no known viable representatives for the
C/E and C/C strategy. In the following, we detail on the feasible strategies and
describe our heuristic implementations that we use for our evaluation:
E/E Strategy. This partitioning strategy works on the most fine-grained level.

We implemented this strategy using the round-robin (RR) algorithm, which
evenly distributes edges to partitions in a lightweight fashion. This strategy

is likely to distribute many or all outgoing edges of one vertex to multiple
partitions. This decomposition leads to the necessity of broadcasts for the
evaluation of all edge predicates.

V/V Strategy. This strategy partitions a graph by its vertices and balances
the amount of vertices per partition. Hence, our round-robin vertices (RRV)
algorithm is a specific implementation of this strategy and distributes every
vertex and all of its outgoing edges to the partitions using the lightweight
round-robin method. The advantage with regard to our pattern matching
processing model (cf., Section 2) is that all outgoing edges of a vertex belong
to a single partition being listed in the routing table. Thus, each edge predicate
with a known source vertex can be routed to a single partition (unicast).

V/E Strategy. Similar to the RRV strategy, the graph is partitioned by its
vertices. However, this partitioning strategy balances the number of edges. We
consider two specific algorithms as implementation of this strategy: balanced
edges (BE) and distributed skew (DS). Both algorithms sort the vertices by the
number of outgoing edges in a descending order. The BE algorithm iterates
over this sorted list and assigns each vertex and all of its outgoing edges
to the currently smallest partition to greedily balance the edges across the
partitions. Thus, all outgoing edges of a vertex belong to the same partition,
which once again results in a unicast for edge predicates with a known source
vertex. The DS algorithm is a state-of-the-art approximation for handling
skewed data in distributed joins [3] and extends the BE algorithm. To relieve
highly connected vertices, DS equally distributes the edges of vertices that
have significantly more outgoing edges compared to the average vertex across
all partitions. Nevertheless, edge predicates aiming at those source vertices
require a broadcast to all partitions. Because most real world graphs exhibit
a non-uniform edge per vertex distribution, all vertex-oriented partitioning
strategies (RRV, BE and DS) lead to different partitioning results.

C/V Strategy. The goal of a component-oriented strategy is to preserve locality
by storing strongly connected vertices within the same partition. We leverage
the well-known state-of-the-art multilevel k-Way algorithm [2] as representa-
tive, which tries to balance the vertices among the partitions. Similar to the
vertex-oriented strategies, we store all outgoing edges of a vertex in the same
partition to avoid broadcasts during the pattern matching process.

4 Experimental Evaluation

To investigate the influence of the partitioning strategies (c.f, Section 3) on the
pattern matching performance, we conducted an exhaustive evaluation on a
medium and large-scale multiprocessor system. We use four test data graphs of
varying application domains that are generated with graph benchmark framework
gMark [1]. Additionally, we defined two conjunctive queries as depicted in Figure 3:
(1) the V query shapes a V with five vertices and four edges and (2) the Quad
query is a rectangle, which consists of four vertices and four edges. For both queries,

A B

E D

C

Predicate 1
(Broadcast)

Predicate 4
(Broadcast)

A D

B C

Predicate 1
(Broadcast)

Request 3
(Broadcast)

R
eq

u
e

st
 2

(U
n

ic
as

t)

P
red

icate
4

(U
n

icast)

A D

B C

R
eq

u
e

st
 2

(U
n

ic
as

t)

P
red

icate
4

(U
n

icast)

(a) V Query

A B

E D

C

Predicate 1
(Broadcast)

Predicate 4
(Broadcast)

A D

B C

Predicate 1
(Broadcast)

Predicate 3
(Broadcast)

P
re

d
ic

at
e

2
(U

n
ic

as
t)

P
red

icate
4

(U
n

icast)

A D

B C

P
red

icate
4

(U
n

icast)

(b) Quad Query

Graph #Vertices #Edges
Average out

Degree
Median

out Degree

Biblio 546k 780k 2.85 2

Shop 53k 3M 112.56 20

Social 91k 232k 5.07 3

Uniprot 57k 339k 11.90 7

(c) Graph meta information

Fig. 3. Query patterns and test graphs for the medium-scale system.

four edge predicate evaluations are necessary. Based on the query semantics, the
evaluation of the edge predicates happens as follows:

V Query. The first edge predicate evaluation is broadcasted to all partitions,
because only the edge label is known and not the source vertex. The inter-
mediate result is a set of end vertices, which are used as source vertices for
the second request. Depending on the partitioning strategy, the second edge
request is evaluated using either unicast or broadcast messages (cf., Section 3).
The intermediate result is a set of destination vertices, which are destination
vertices for the third edge predicate. Hence, the third requests needs to be
broadcasted to all partitions, because the source vertex is unknown. The
same applies for the fourth edge predicate evaluation.

Quad Query. The edge predicate evaluation of the Quad query is similar to
the one of the V query with the difference that the evaluation of the fourth
edge predicate depends on the partitioning strategy. Thus, this predicate can
mostly be evaluated without the need of a broadcast.

As the edge predicate evaluation of our two queries suggests, pattern matching
is a combination of unicasts and broadcasts within a partitioned environment.
On the one hand, broadcasts distribute the evaluation of edge predicates to
all partitions favoring edge-balanced partitions for an efficient execution. On
the other hand, unicast messages assign edge predicate evaluations to single
partitions, which – in contrast – favors vertex-balanced partitions.

For all of our experiments, we loaded the graph-under-test into main memory;
partitioned it; and evenly distributed the partitions across the sockets and
executed both pattern queries for all partitioning strategies and all possible
system configurations (SC). In our case a system configuration denominates a
combination of the active workers and the total number of partitions.

4.1 Evaluation on a Medium-Scale Multiprocessor System

Our medium-scale multiprocessor system consists of 4 sockets each equipped with
an Intel Xeon CPU E7-4830 – resulting in 32 physical cores and 64 hardware
threads – and 128 GB of main memory. For this system, we use the graphs with
the characteristics listed in Figure 3(c).

(a) Vertex distribution. (b) Edge distribution.

Fig. 4. Partitioning results for 64 partitions.

Partitioning Results. Figure 4 shows an overview of partitioning results for
the different strategies and our test graphs. Since we have 64 hardware threads, we
split the graphs into 64 partitions. The plots show the distribution of vertices and
edges over the 64 partitions using box plots. From these plots and our experiments
with varying number of partitions, we can derive the following observations:

(1) The partitioning and balancing criteria of the respective strategies are fulfilled
independently of the graphs. For instance, our round-robin vertices (RRV)
algorithm partitions the graphs by vertices and ideally balances the vertices
among the 64 partitions, i.e., the vertices are evenly distributed over the
partitions as depicted in Figure 4(a). The same applies for balanced edges (BE)
and distributed skew (DS) which perfectly balance the edges among the
partitions, as shown in Figure 4(b).

(2) Depending on the strategy, balancing is done either by vertices or edges. This
can lead to an imbalance on the non-balancing criterion depending on the
underlying graph. For instance, BE and DS balance the partitions on edges.
However, there are few partitions with a much higher number of vertices
than the others (illustrated as single dots in Figure 4(a)). These outliers
depend on the graph data. For DS outlier, partitions exist for Uniprot and
Social, but not for Biblio and Shop. The same issue is observable for RRV,
however the imbalance on the edges over the partitions is not as remarkable.

(3) The k-Way algorithm partitions graphs by components and balances the
vertices. On the one hand, this leads to an even distribution of the vertices
over the partitions for our test graphs as shown in Figure 4(a). This potentially
leads to an imbalanced number of edges per partition and this imbalance is
very different for the four test graphs, as visible in Figure 4(b).

(4) The E/E strategy performs worst. The round-robin distribution of the edges
among all partitions leads to the necessity of broadcasts during all edge
predicate evaluations, which massively inhibits the system. Therefore, we
omit the E/E results henceforward.

To summarize, each partitioning strategy is able to successfully maintain its
respective balancing criterion while partitioning the graph into the considered

8 16 32 64

8 2.46 2.11 2.04 3.02

16 2.31 1.38 1.01 1.49

32 2.30 1.46 1.00 1.17

64 2.36 1.23 1.02 1.35

128 2.59 1.40 1.16 1.44

256 2.99 1.72 1.26 1.52

RRV Local

P
ar

ti
ti

o
n

s
Worker

Fig. 5. System configuration heat map for
RRV. V query on Biblio graph.

 0
 20
 40
 60
 80

 100

kWay-32/32

RRV-32/32

3.82 3.82

M
es

sa
ge

s
[%

]

System Configuration

Local
Remote

Broadcasts

11.20

24.28

84.98

71.90

Fig. 6. Messages per partitioning algo-
rithm. V query on Biblio graph.

8 16 32 64

8 16.13 16.43 16.61 25.77

16 16.02 16.43 16.30 24.79

32 15.98 16.48 15.77 24.88

64 15.36 15.86 15.61 23.91

128 16.93 15.80 15.70 23.79

256 16.14 15.95 15.59 24.21

DS

8 16 32 64

8 15.86 16.20 16.27 24.43

16 15.45 16.68 16.25 24.89

32 15.55 15.96 15.95 24.57

64 15.32 15.95 15.41 23.55

128 15.75 15.68 16.07 23.96

256 15.71 15.86 16.20 23.34

Kway

8 16 32 64

8 3.39 3.36 3.36 5.18

16 3.41 1.98 1.68 2.54

32 3.48 1.95 1.04 1.48

64 3.34 2.02 1.09 1.00

128 3.54 1.98 1.07 1.09

256 3.91 2.18 1.20 1.13

8 16 32 64

8 4.15 3.56 3.44 5.10

16 3.90 2.33 1.71 2.52

32 3.88 2.46 1.69 1.98

64 3.98 2.08 1.73 2.27

128 4.38 2.35 1.96 2.44

256 5.04 2.90 2.13 2.56

P
ar

ti
ti

o
n

s

Worker

Worker

Worker

P
ar

ti
ti

o
n

s

Worker

P
ar

ti
ti

o
n

s
P

ar
ti

ti
o

n
s

(a) C/C: k-Way

8 16 32 64

8 16.13 16.43 16.61 25.77

16 16.02 16.43 16.30 24.79

32 15.98 16.48 15.77 24.88

64 15.36 15.86 15.61 23.91

128 16.93 15.80 15.70 23.79

256 16.14 15.95 15.59 24.21

DS

8 16 32 64

8 15.86 16.20 16.27 24.43

16 15.45 16.68 16.25 24.89

32 15.55 15.96 15.95 24.57

64 15.32 15.95 15.41 23.55

128 15.75 15.68 16.07 23.96

256 15.71 15.86 16.20 23.34

Kway

8 16 32 64

8 3.39 3.36 3.36 5.18

16 3.41 1.98 1.68 2.54

32 3.48 1.95 1.04 1.48

64 3.34 2.02 1.09 1.00

128 3.54 1.98 1.07 1.09

256 3.91 2.18 1.20 1.13

8 16 32 64

8 4.15 3.56 3.44 5.10

16 3.90 2.33 1.71 2.52

32 3.88 2.46 1.69 1.98

64 3.98 2.08 1.73 2.27

128 4.38 2.35 1.96 2.44

256 5.04 2.90 2.13 2.56

P
ar

ti
ti

o
n

s

Worker

Worker

Worker

P
ar

ti
ti

o
n

s

Worker

P
ar

ti
ti

o
n

s
P

ar
ti

ti
o

n
s

(b) V/V: RRV

8 16 32 64

8 16.13 16.43 16.61 25.77

16 16.02 16.43 16.30 24.79

32 15.98 16.48 15.77 24.88

64 15.36 15.86 15.61 23.91

128 16.93 15.80 15.70 23.79

256 16.14 15.95 15.59 24.21

DS

8 16 32 64

8 15.86 16.20 16.27 24.43

16 15.45 16.68 16.25 24.89

32 15.55 15.96 15.95 24.57

64 15.32 15.95 15.41 23.55

128 15.75 15.68 16.07 23.96

256 15.71 15.86 16.20 23.34

Kway

8 16 32 64

8 3.39 3.36 3.36 5.18

16 3.41 1.98 1.68 2.54

32 3.48 1.95 1.04 1.48

64 3.34 2.02 1.09 1.00

128 3.54 1.98 1.07 1.09

256 3.91 2.18 1.20 1.13

8 16 32 64

8 4.15 3.56 3.44 5.10

16 3.90 2.33 1.71 2.52

32 3.88 2.46 1.69 1.98

64 3.98 2.08 1.73 2.27

128 4.38 2.35 1.96 2.44

256 5.04 2.90 2.13 2.56

P
ar

ti
ti

o
n

s

Worker

Worker

Worker

P
ar

ti
ti

o
n

s

Worker

P
ar

ti
ti

o
n

s
P

ar
ti

ti
o

n
s

(c) V/E: BE

8 16 32 64

8 16.13 16.43 16.61 25.77

16 16.02 16.43 16.30 24.79

32 15.98 16.48 15.77 24.88

64 15.36 15.86 15.61 23.91

128 16.93 15.80 15.70 23.79

256 16.14 15.95 15.59 24.21

DS

8 16 32 64

8 15.86 16.20 16.27 24.43

16 15.45 16.68 16.25 24.89

32 15.55 15.96 15.95 24.57

64 15.32 15.95 15.41 23.55

128 15.75 15.68 16.07 23.96

256 15.71 15.86 16.20 23.34

Kway

8 16 32 64

8 3.39 3.36 3.36 5.18

16 3.41 1.98 1.68 2.54

32 3.48 1.95 1.04 1.48

64 3.34 2.02 1.09 1.00

128 3.54 1.98 1.07 1.09

256 3.91 2.18 1.20 1.13

8 16 32 64

8 4.15 3.56 3.44 5.10

16 3.90 2.33 1.71 2.52

32 3.88 2.46 1.69 1.98

64 3.98 2.08 1.73 2.27

128 4.38 2.35 1.96 2.44

256 5.04 2.90 2.13 2.56

P
ar

ti
ti

o
n

s

Worker

Worker

Worker

P
ar

ti
ti

o
n

s

Worker

P
ar

ti
ti

o
n

s
P

ar
ti

ti
o

n
s

(d) V/E: DS

Fig. 7. System configuration heat map. V query on Biblio graph. Color shadings relative
to the global optimum (k-Way 64/64).

number of partitions. However, the quality of the result is different for each case.
Depending on the graph, there are partitions that vary greatly from the majority.

Number of Partitions and Workers. If we compare the partitioning results
of Figure 4 for the Biblio graph, we find that the V/V strategy (RRV) achieves
the best partitioning result in terms of balanced partitions for both vertices and
edges. Generally, such partitioning is very beneficial for our pattern matching.

In the first set of experiments, we use that setting to investigate the influence
of the system configuration on the pattern matching performance for the V query.
Thus, we varied the number of active workers between 8 and 64 and used 8 to 256
partitions. The heat map from Figure 5 shows the slowdown factors compared
to the optimal configuration. The optimal configuration uses 32 partitions and
32 workers. Generally, the pattern matching scales well for physical hardware
threads, which is indicated by the coloring trend from orange to green between
the columns for 8 and 32 workers. In this case, 64 workers are not beneficial,
because the V query employs two broadcasting requests at the end and the
hyper-threads do not provide as much performance as their physical siblings.

Partitioning Strategies. After examining the query performance for a single
graph partitioning strategy, we conducted the same experiments with the re-
maining strategies to show the influence of the different partitioning strategies in
detail. The resulting heat maps are depicted in Figure 7. From these heat maps,
we derive the following three facts:

(1) The V/E strategy, represented by the BE and DS algorithms, performs
comparatively bad. This happens because the query massively hits the vertex
outlier partition, which can be seen in Figure 4(a). Hence, this partition
becomes a bottleneck for the second edge predicate of the V query.

(2) The k-Way partitioning results in a better query performance and utilizes
the whole system with its optimal system configuration being 64 partitions
by 64 workers. The advantage of k-Way is the partitioning and balancing of
components. For the Biblio graph this results in even distribution of vertices
and an almost even distribution of edges among the partitions. Furthermore,
connected vertices are partitioned together, which is not necessarily the case
for RRV as illustrated in Figure 6. For the k-Way partitioning, the system
creates mostly socket local messages and only a few remote messages, whereas
the V/V strategy results in many remote messages as connected vertices are
distributed among partitions on remote sockets.

From these results, we can conclude that the C/V partitioning strategy results
in partition population that allows the system to scale up to its full potential.

Varying Graphs. After thoroughly examining the influences of different parti-
tioning strategies on one graph, we conducted the same experiments for all other
graphs from Figure 3(c). Figure 8 presents the best system configurations per
partitioning strategy and highlights the overall optimum. We showed that the
C/C strategy performs best for the V query on the Biblio graph by utilizing the
whole system and should be the strategy of choice. However, when querying the
Shop graph with a k-Way partitioning, the query performance drops by a factor
of 2.3 while employing 32/32 as its optimal system configuration. The slowdown
can be explained by the massive imbalance of edges within the partitions of
k-Way as shown in Figure 4(b). The other strategies show well balanced edges per
partition, therefore all of them result in equal query performance. The same holds
for the Social graph. The Uniprot graph is special in terms of the intermediate
results, which are shown in Figure 11. Compared to the Biblio graph, the V
query produces a huge number of broadcasts for the Uniprot graph in the third
edge predicate (c.f. Figure 3(a)), which inhibts the system from scaling well,
and therefore yields better performance for less workers. We conclude that the
behavior of the query is strongly tied to the underlying graph.

Biblio Shop Social Uniprot

Strategy SC ms SC ms SC ms SC Ms

V/V: RRV 32/32 65 32/32 11790 32/32 665 8/8 884

V/E: BE 32/128 838 32/32 12387 16/16 666 8/8 878

V/E: DS 8/16 849 32/32 11964 32/32 673 8/8 890

C/V: k-Way 64/64 48 32/32 27376 32/32 864 8/8 885

Biblio Shop Social Uniprot

Strategy SC ms SC ms SC ms SC Ms

V/V: RRV 32/32 2663 32/64 5773 32/32 102 32/32 22

V/E: BE 32/32 2617 32/64 5850 16/16 132 32/32 21

V/E: DS 32/32 2682 32/64 5982 32/32 94 32/32 22

C/V: k-Way 32/32 2254 64/128 15217 32/64 304 32/32 24

Fig. 8. Optimal system configurations
per graph and partitioning strategy for
the V query.

Biblio Shop Social Uniprot

Strategy SC ms SC ms SC ms SC Ms

V/V: RRV 32/32 65 32/32 11790 32/32 665 8/8 884

V/E: BE 32/128 838 32/32 12387 16/16 666 8/8 878

V/E: DS 8/16 849 32/32 11964 32/32 673 8/8 890

C/V: k-Way 64/64 48 32/32 27376 32/32 864 8/8 885

Biblio Shop Social Uniprot

Strategy SC ms SC ms SC ms SC Ms

V/V: RRV 32/32 2663 32/64 5773 32/32 102 32/32 22

V/E: BE 32/32 2617 32/64 5850 16/16 132 32/32 21

V/E: DS 32/32 2682 32/64 5982 32/32 94 32/32 22

C/V: k-Way 32/32 2254 64/128 15217 32/64 304 32/32 24

Fig. 9. Optimal system configurations
per graph and partitioning strategy for
the Quad query.

BE

8 16 32 64

8 1.69 1.68 1.70 2.51

16 2.26 1.23 1.33 1.87

32 3.32 1.78 1.16 1.68

64 5.80 3.25 1.92 2.34

128 10.00 5.87 3.88 4.31

256 10.00 10.00 7.79 8.36

KW

8 16 32 64

8 1.61 1.64 1.67 2.56

16 2.15 1.32 1.36 2.12

32 3.27 1.78 1.00 1.70

64 5.75 3.16 2.09 2.31

128 10.00 5.88 3.89 4.06

256 10.00 10.00 7.81 7.93

DS

8 16 32 64

8 1.74 1.74 1.77 2.52

16 2.21 1.25 1.40 1.91

32 3.31 1.82 1.19 1.71

64 5.79 3.32 2.07 2.35

128 10.00 6.03 3.93 4.34

256 10.00 10.00 8.09 8.52

8 16 32 64

8 1.67 1.67 1.69 2.48

16 2.25 1.22 1.33 1.87

32 3.39 1.78 1.18 1.66

64 5.80 3.28 2.03 2.30

128 10.00 5.86 3.85 4.28

256 10.00 10.00 7.75 8.41

Worker

P
ar
ti
ti
o
n
s

P
ar
ti
ti
o
n
s

P
ar
ti
ti
o
n
s

P
ar
ti
ti
o
n
s

Worker

Worker

Worker

BE

8 16 32 64

8 1.69 1.68 1.70 2.51

16 2.26 1.23 1.33 1.87

32 3.32 1.78 1.16 1.68

64 5.80 3.25 1.92 2.34

128 10.00 5.87 3.88 4.31

256 10.00 10.00 7.79 8.36

KW

8 16 32 64

8 1.61 1.64 1.67 2.56

16 2.15 1.32 1.36 2.12

32 3.27 1.78 1.00 1.70

64 5.75 3.16 2.09 2.31

128 10.00 5.88 3.89 4.06

256 10.00 10.00 7.81 7.93

DS

8 16 32 64

8 1.74 1.74 1.77 2.52

16 2.21 1.25 1.40 1.91

32 3.31 1.82 1.19 1.71

64 5.79 3.32 2.07 2.35

128 10.00 6.03 3.93 4.34

256 10.00 10.00 8.09 8.52

8 16 32 64

8 1.67 1.67 1.69 2.48

16 2.25 1.22 1.33 1.87

32 3.39 1.78 1.18 1.66

64 5.80 3.28 2.03 2.30

128 10.00 5.86 3.85 4.28

256 10.00 10.00 7.75 8.41

Worker

P
ar
ti
ti
o
n
s

P
ar
ti
ti
o
n
s

P
ar
ti
ti
o
n
s

P
ar
ti
ti
o
n
s

Worker

Worker

Worker

BE

8 16 32 64

8 1.69 1.68 1.70 2.51

16 2.26 1.23 1.33 1.87

32 3.32 1.78 1.16 1.68

64 5.80 3.25 1.92 2.34

128 10.00 5.87 3.88 4.31

256 10.00 10.00 7.79 8.36

KW

8 16 32 64

8 1.61 1.64 1.67 2.56

16 2.15 1.32 1.36 2.12

32 3.27 1.78 1.00 1.70

64 5.75 3.16 2.09 2.31

128 10.00 5.88 3.89 4.06

256 10.00 10.00 7.81 7.93

DS

8 16 32 64

8 1.74 1.74 1.77 2.52

16 2.21 1.25 1.40 1.91

32 3.31 1.82 1.19 1.71

64 5.79 3.32 2.07 2.35

128 10.00 6.03 3.93 4.34

256 10.00 10.00 8.09 8.52

8 16 32 64

8 1.67 1.67 1.69 2.48

16 2.25 1.22 1.33 1.87

32 3.39 1.78 1.18 1.66

64 5.80 3.28 2.03 2.30

128 10.00 5.86 3.85 4.28

256 10.00 10.00 7.75 8.41

Worker

P
ar
ti
ti
o
n
s

P
ar
ti
ti
o
n
s

P
ar
ti
ti
o
n
s

P
ar
ti
ti
o
n
s

Worker

Worker

Worker

BE

8 16 32 64

8 1.69 1.68 1.70 2.51

16 2.26 1.23 1.33 1.87

32 3.32 1.78 1.16 1.68

64 5.80 3.25 1.92 2.34

128 10.00 5.87 3.88 4.31

256 10.00 10.00 7.79 8.36

KW

8 16 32 64

8 1.61 1.64 1.67 2.56

16 2.15 1.32 1.36 2.12

32 3.27 1.78 1.00 1.70

64 5.75 3.16 2.09 2.31

128 10.00 5.88 3.89 4.06

256 10.00 10.00 7.81 7.93

DS

8 16 32 64

8 1.74 1.74 1.77 2.52

16 2.21 1.25 1.40 1.91

32 3.31 1.82 1.19 1.71

64 5.79 3.32 2.07 2.35

128 10.00 6.03 3.93 4.34

256 10.00 10.00 8.09 8.52

8 16 32 64

8 1.67 1.67 1.69 2.48

16 2.25 1.22 1.33 1.87

32 3.39 1.78 1.18 1.66

64 5.80 3.28 2.03 2.30

128 10.00 5.86 3.85 4.28

256 10.00 10.00 7.75 8.41

Worker

P
ar
ti
ti
o
n
s

P
ar
ti
ti
o
n
s

P
ar
ti
ti
o
n
s

P
ar
ti
ti
o
n
s

Worker

Worker

Worker

Fig. 10. System configuration heat maps. Quad
query on Biblio graph.

Messages per
Edge Request

Biblio Uniprot

1 299,488 971

2 117 970

3 267 294,932

4 837 10.320

Unicast Broadcast Final result

Fig. 11. Intermediate results for
each edge predicate of the V query

Varying Queries The previous paragraph concluded our test series for the
V query. Now we want to show the performance implications of all considered
influence factors for a second query type, namely the Quad query from Figure 3(b).
The results for all system configurations, graphs and partitioning strategies are
shown in the heat maps of Figure 9 and Figure 10. The optimal configurations
are now always tied to 32 Workers with a varying number of partitions. We see
the same run time behavior as for the V query, except for the V/E strategy.
The Quad query does not hit the vertex outlier partitions (c.f. Figure 4(a)),
which enables the BE and DS partitionings to compete with RRV and k-Way.
The Shop and Social graphs show an equal slowdown for C/V, compared to the
other strategies. However, the Uniprot graph now scales well with the hardware
threads, since there are more intermediate results in the Unicast edge predicate.

4.2 Evaluation on a Large-Scale Multiprocessor System

Our large multiprocessor system is an SGI UV 3000 with 64 sockets each equipped
with an Intel Xeon CPU E5-4655 v3 and a total of 8 TB main memory. We
conducted the same experiments as for Section 4.1 and used gMark to scale up
all graphs from Figure 3(c) by a factor of 10 while preserving all other graph
properties. All in all, we found that the entirety of our experiments on the large-
scale system confirmed our observations from the medium-scale system. Figure 12
illustrates the heat maps for the Quad query on the Social graph for the SGI
system. As for the medium-scale system, we see that using the hyper-threads is
also not feasible on the SGI system. However, utilizing all physical cores leads to
optimal performance in many cases, which underlines that our processing scales
well with the employed hardware. In contrast to the medium-scale system, we
see more variations in the heat maps, which is explained by the bigger number of
sockets and the increasing influence of the NUMA effect on query performance.

4.3 Lessons Learned

Employing an optimal partitioning strategy is crucial for query performance. To
find out the best strategy for a given query, we found that weighing the amount
of broadcasts against unicasts, which result from the query pattern, is important.

BE

64 128 192 256 320 384 768

64

128

192

256

320

384

768

1536

DS

64 128 192 256 320 384 768

64

128

192

256

320

384

768

1536

Kway

64 128 192 256 320 384 768

64

128

192

256

320

384

768

1536

Workers

Workers

P
ar
ti
ti
o
n
s

234

P
ar
ti
ti
o
n
s

P
ar
ti
ti
o
n
s

x

(a) C/V: k-Way

RRV

64 128 192 256 320 384 768

64

128

192

256

320

384

768

1536

P
ar
ti
ti
o
n
s

Workers

x

(b) V/V: RRV

BE

64 128 192 256 320 384 768

64

128

192

256

320

384

768

1536

DS

64 128 192 256 320 384 768

64

128

192

256

320

384

768

1536

Kway

64 128 192 256 320 384 768

64

128

192

256

320

384

768

1536

P
ar
ti
ti
o
n
s

Workers

Workers

P
ar
ti
ti
o
n
s

Workers

P
ar
ti
ti
o
n
s

x

(c) V/E: BE

BE

64 128 192 256 320 384 768

64

128

192

256

320

384

768

1536

DS

64 128 192 256 320 384 768

64

128

192

256

320

384

768

1536

Kway

64 128 192 256 320 384 768

64

128

192

256

320

384

768

1536

P
ar
ti
ti
o
n
s

Workers

Workers

P
ar
ti
ti
o
n
s

Workers

P
ar
ti
ti
o
n
s

x

(d) V/E: DS

Fig. 12. System configuration heat maps. Quad query on Social graph.

Dominant Unicasts It is desirable to partition the graph using a strategy
which balances both edges and vertices. We argue that employing the C/V
strategy is beneficial, even if there is a minor edge imbalance, since the unicast
part of the query will benefit from the locality property of adjacent graph
partitions. However, if the edge imbalance exceeeds a certain limit, we suggest
switching to the V/V strategy.

Dominant Broadcasts Each partitioning strategy performs well. However it
is desirable to achieve a balanced amount of edges between the partitions. As
edges represent the amount of data records per partition, balancing them results
in a more evenly distributed work in the system. All of the evaluated partition
strategies have proven to be viable for graph pattern matching on a data-
oriented architecture, except for the E/E strategy because of its broadcast-only
nature.

The challenge is to adequately estimate the influences of broadcasts and unicasts
due to their dependency on the underlying graph. Our experiments showed, that
the optimal system configuration varies among the different workloads. As a rule
of thumb, we found that it is beneficial to not use hyper threads in most cases
and directly mapping the number of graph partitions to the number of workers.

5 Related Work

Graph processing on NUMA systems is considered by a broad community. There
are many studies towards optimizing the data layout for and the execution of
a Breadth First Search (BFS) on a NUMA machine, such as Yasui et al. show
in [18]. We prove that, unlikely for BFS, it is not the best practice to always
utilize the maximum number of available cores, depending on the executed query.

Verma et al. [16] examine different graph partitioning strategies of existing
systems and give an suggestion of which strategy to use for specific analytical
algorithms. In contrast to the authors, we generally categorize graph partitioning
strategies based on their partitioning and balancing criterion. Also, we don’t
evaluate specific algorithms but whole graph partitioning categories with respect
to their influence on the query performance.

Many graph systems like Ligra [12] or Galois [7] often only state that the
data will be partitioned and how, but not why. We have shown that using one
partitioning scheme for all graphs is not the optimal solution and may result in
huge slowdown factors, compared to the possibly best system configuration.

6 Conclusions and Future Work

In this paper, we could show a plethora of dependencies for graph partitioning and
processing on NUMA systems. We have proven that there is no one-size-fits-all
strategy in terms of a good combination of a system configuration and graph
partitioning algorithm out of the box. As outlined in Section 3, we see a need to
examine the effects of optimization measures such as vertex or edge replication.

References

1. G. Bagan et al. Generating flexible workloads for graph databases. PVLDB, 2016.
2. A. Buluç et al. Recent advances in graph partitioning. CoRR, 2013.
3. L. Cheng et al. Efficiently handling skew in outer joins on distributed systems.

CCGrid, 2014.
4. S. Decker et al. The semantic web: the roles of xml and rdf. IEEE, 2000.
5. S. Hong et al. Green-Marl: a DSL for easy and efficient graph analysis. ASPLOS,

2012.
6. T. Kissinger et al. ERIS: A numa-aware in-memory storage engine for analytical

workload. ADMS, 2014.
7. D. Nguyen et al. A lightweight infrastructure for graph analytics. SIGOPS, 2013.
8. H. Ogata et al. A heuristic graph comparison algorithm and its application to

detect functionally related enzyme clusters. Nucleic Acids Research, 2000.
9. E. Otte et al. Social network analysis: a powerful strategy, also for the information

sciences. Journal of Information Science, 2002.
10. I. Pandis et al. Data-oriented transaction execution. PVLDB, 2010.
11. S. Pandit et al. Netprobe: A fast and scalable system for fraud detection in online

auction networks. WWW, 2007.
12. J. Shun et al. Ligra: a lightweight graph processing framework for shared memory.

SIGPLAN, 2013.
13. M. K. Tas et al. Greed is good: Optimistic algorithms for bipartite-graph partial

coloring on multicore architectures. CoRR, 2017.
14. T. Tran et al. Top-k exploration of query candidates for efficient keyword search

on graph-shaped (rdf) data. ICDE, 2009.
15. L. G. Valiant. A bridging model for parallel computation. Commun. ACM, 1990.
16. S. Verma et al. An experimental comparsion of partitioning strategies in distributed

graph processing. VLDB Endowment, 2017.
17. P. T. Wood. Query languages for graph databases. SIGMOD, 2012.
18. Y. Yasui et al. Numa-aware scalable graph traversal on SGI UV systems. HPGP,

2016.

	Partitioning Strategy Selection for In-Memory Graph Pattern Matching on Multiprocessor Systems

