
XLIndy: Interactive Recognition and Information Extraction in
Spreadsheets

Elvis Koci, Dana Kuban, Nico Luettig,
Dominik Olwig, Maik Thiele, Julius Gonsior,

and Wolfgang Lehner
name.surname@tu-dresden.de

Fakultät Informatik,
Technische Universität Dresden

Dresden, Germany

Oscar Romero
oromero@essi.upc.edu

Departament d’Enginyeria de Serveis i Sistemes
d’Informació,

Universitat Politècnica de Catalunya-BarcelonaTech
Barcelona, Spain

ABSTRACT
Over the years, spreadsheets have established their presence in
many domains, including business, government, and science. How-
ever, challenges arise due to spreadsheets being partially-structured
and carrying implicit (visual and textual) information. This trans-
lates into a bottleneck, when it comes to automatic analysis and
extraction of information. Therefore, we present XLIndy, a Mi-
crosoft Excel add-in with a machine learning back-end, written in
Python. It showcases our novel methods for layout inference and
table recognition in spreadsheets. For a selected task and method,
users can visually inspect the results, change configurations, and
compare different runs. This enables iterative fine-tuning. Addi-
tionally, users can manually revise the predicted layout and tables,
and subsequently save them as annotations. The latter is used to
measure performance and (re-)train classifiers. Finally, data in the
recognized tables can be extracted for further processing. XLIndy
supports several standard formats, such as CSV and JSON.

CCS CONCEPTS
• Information systems→Document structure; Enterprise informa-
tion systems; Information extraction; Mediators and data integration.

KEYWORDS
spreadsheets, table recognition, layout inference, information ex-
traction, annotation, interactive, excel, add-in

ACM Reference Format:
Elvis Koci, Dana Kuban, Nico Luettig, Dominik Olwig, Maik Thiele,
Julius Gonsior, and Wolfgang Lehner and Oscar Romero. 2019. XLIndy:
Interactive Recognition and Information Extraction in Spreadsheets. In
ACM Symposium on Document Engineering 2019 (DocEng ’19), September
23–26, 2019, Berlin, Germany. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3342558.3345409

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DocEng ’19, September 23–26, 2019, Berlin, Germany
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6887-2/19/09. . . $15.00
https://doi.org/10.1145/3342558.3345409

1 INTRODUCTION
Spreadsheets are intuitive to use and highly effective data process-
ing tools. As such, they have been adopted for various tasks in
many different settings. In business, spreadsheets are frequently
used for financial analysis and reporting [8]. Governmental institu-
tions use them to collect and make data available (e.g., in open data
platforms [3]). In science, spreadsheets act as lab books, or even as
sophisticated calculators and simulators [17].

Seeing this wide usage and the concentration of valuable data
in spreadsheets, industry and research have recognized the need
for automatic processing. Recent attempts, such as Ideas in Excel
[6] and Explore in Google Sheets, aim at providing insights and
recommendations to users (e.g., summary statistics and charts),
based on background analysis of tabular data in the sheet. Other
works [1, 3, 5, 18], including ours [11–16], focus on integrating and
extracting data from spreadsheets. One of the main concerns comes
with data and knowledge being scattered in multiple spreadsheet
files. This can lead to information silos, unless appropriate methods
are put in place to process these data automatically. Such methods
can enhance interoperability, encourage better use, and enable more
control over spreadsheet data.

However, spreadsheets are designed primarily for human con-
sumption, and as such they favor customization and visual compre-
hension. Data are often intermingled with formatting artifacts and
textual metadata, which carry domain-specific or even user-specific
information (i.e., personal preferences). Multiple tables, with differ-
ent layout and structure, can be found in the same sheet. Moreover,
these tables do not adhere to a predefined formal data model. Al-
together, spreadsheets are better described as partially-structured
documents, with a significant degree of implicit information.

In this paper, we present XLIndy, which showcases our innova-
tive approaches for tackling some of the aforementioned challenges.
The front-end of XLIndy is developed as a Microsoft Excel add-in.
We re-utilize the powerful native user interface, while introducing
custom panels and menus when needed. The results from the im-
plemented approaches are visually displayed to the user, in order
to facilitate fast inspection, comparison, and fine-tuning. Further-
more, the add-in plays the role of a mediator between the native
Excel application and the machine learning back-end. The latter
holds utilities and the proposed approaches, which were entirely
developed in Python. In this way, we take advantage of the many
available and highly efficient Python libraries.

https://doi.org/10.1145/3342558.3345409
https://doi.org/10.1145/3342558.3345409
https://doi.org/10.1145/3342558.3345409

DocEng ’19, September 23–26, 2019, Berlin, Germany Koci et al.

Figure 1: Processing pipeline

Contributions. In literature we find existing systems attempting
information extraction in spreadsheets [4, 7]. Their main objective
is to extract and load normalized spreadsheet data into a relational
database. Clearly, this enables many possible uses for spreadsheet
data. However, these works cover only a small subset of scenarios
that might occur in spreadsheets. Instead, we assume any number
of tables, with arbitrary arrangement, exhibiting high variability in
contents, formatting, and layout. XLIndy is not an end-user prod-
uct, but rather a framework for testing and interacting with our
innovative approaches. Additionally, users can give their feedback
(e.g., repairing results), which is used for further improvement. Ul-
timately, XLIndy provides some support for information extraction,
in formats such as CSV and JSON. This already facilitates the re-use
of spreadsheet data for the majority of information systems.
Paper Outline. In the following section, we discuss the proposed
processing pipeline, and its individual steps. We provide a high-
level overview of the XLIndy system, in Section 3. Finally, in Section
4, we outline the expected demonstration of our tool.

2 PROCESSING PIPELINE
We see recognition and information extraction in spreadsheets as
a series of steps, which collectively form our processing pipeline,
illustrated in Figure 1. Although we cover various aspects of au-
tomatic spreadsheet processing, our research focuses mainly on
two crucial tasks: layout inference [14, 16] and table identification
[11–13, 15]. Subsequently, we adapt approaches from related work,
to extract the information from the detected tables.

2.1 Worksheet Analysis
For each non-empty1 cell in the sheet, we collect a variety of fea-
tures, detailed at [16]. We consider style features, like the font size,
alignment, and background color. As well as, we study cell contents,
addressing aspects such as value type, length, and special charac-
ters/words. Additionally, we pay close attention to formulas, a key
spreadsheet functionality, but to some extent overlooked by re-
lated work. Here, we capture references (i.e., dependencies between
cells), and determine the formula type (e.g., numeric aggregations).
Moreover, we investigate the surroundings of a cell, measuring the
similarity with its neighbors, in terms of style and content.

1It contains a value, which is not entirely made of white space characters.

2.2 Layout Inference
In simple terms, layout inference is the task of segmenting the
contents of a document into regions of interest. Typically, the seg-
mentation is based on both geometrical and logical analysis. In this
work, we start by inferring the logical layout role of each non-empty
cell, in a sheet. Subsequently, we group adjacent cells of the same
role to form strictly rectangular layout regions (LRs). This second
step largely depends on the geometry and the spatial arrangement
of non-empty cells. Moreover, note that overall approach can de-
scribe arbitrary layouts. It foresees that vertical (tall) and horizontal
(wide) LRs can coexist in the same sheet.

Figure 1, illustrates the layout regions for an example sheet.
Bold lines indicate borders of LRs, while dashed lines separate the
enclosed cells, which share the same layout role. We define seven
such roles2, some shown in Figure 1. Header (H) and Data (D) are
the main ingredients of tables.Notes (N) and Titles (M) provide meta-
information about specific areas or the whole sheet. Cells marked
as Derived (B) hold numeric aggregations and summary values.
Attributes describe cells participating in a parent-child relationship
(i.e., hierarchy). While, Other is a placeholder for everything else.

To infer these layout roles, we use classifiers, which were trained
in a supervised fashion. As outlined in [16], we tested five different
machine learning algorithms. Based on our evaluation, Random
Forest achieves the highest overall accuracy.

Nevertheless, misclassifications (e.g., the cell marked as D!) can
lead to inconsistencies in the inferred layout. At [14] we propose
an optional post-processing step, to tackle this challenge (not illus-
trated in Figure 1). Briefly, this step infers and repairs inconsisten-
cies, taking into account the context from the surrounding layout
regions. It considers their label, size, distance, and alignment with
the currently in-focus LR.

2.3 Table Recognition
In this task, we attempt to identify areas of the sheet that hold
tabular data. This demands an approach with high precision, since
even the slightest mistakes, by a row or a column, could lead to
false interpretations of the detected tables.

The inferred layout provides a good start for table recognition.
However, we still need to tackle a series of challenges. Multiple
tables and non-tables (e.g., lists, comments) can coexist in the same
sheet. Also, they can be arranged in arbitrary ways, often using
both directions: vertical (top-bottom) and horizontal (left-right).
The tables themselves exhibit high diversity in terms of layout and
2Previous publications use five roles. Here, we refine some and introduce new ones.

XLIndy: Recognition and Extraction in Spreadsheets DocEng ’19, September 23–26, 2019, Berlin, Germany

structure. Additionally, empty cells, rows, and columns might be
present inside the tables. Often, they indicate missing values or
formatting artifacts (e.g., visual padding of contents). However, they
can be easily misinterpreted, ultimately leading to information loss.

We have proposed several approaches for table recognition in
spreadsheets [11, 13, 15]. Initially we employed heuristic- and rule-
based methods. Most recently, we adopted genetic-based search and
optimization techniques. The last two works, use a graph model to
represent the overall layout of the sheet (i.e., the spatial arrange-
ment of the inferred layout regions). Subsequently, the recognition
task is formulated as a graph partitioning problem. We look for the
optimum partitioning, such that the resulting subgraphs correspond
precisely to true tables or non-tables of the sheet.

2.4 Information Extraction
XLIndy supports information extraction from recognized tables.
We adapt approaches from related work [9, 18], to analyze tables
and infer their schema. Initially, we check for hierarchies on the
top rows and the left columns of the table. For instance, in Figure 3,
the Header cells of the bottom table are stacked, spanning multiple
rows. Clearly, the ones in the lower rows depend on those above.
Furthermore, in the left column, months are grouped by quarter
(i.e., Attributes). Having inferred hierarchies, we proceed to extract
tuples. We traverse the top, and then move to the left hierarchies.
An example tuple would be: [‘Monitor’, ‘1st Quarter’, ‘April’, 421].

3 SYSTEM OVERVIEW
XLIndy carries out the whole processing pipeline, described in the
previous section. The users interact with the tool via a familiar inter-
face, i.e., the Excel desktop application. On top of that, we deploy a
custom add-in, which was developed in C#. This add-in triggers the
execution of tasks from the pipeline, and subsequently handles the
results. Nevertheless, the tasks themselves are performed by Python
scripts, which stay at the back-end of the system. While, a local
Python service (described in more details in the following sections)
manages the communication between the front- and back-end.

Another aspect of the system is the physical layer, which holds
spreadsheet, configuration, and temporary run-time files. Here,
resides also the gold standard dataset [12], which is not a direct part
of the system, but still tightly related to it. After all, on this dataset
we train/test the proposed layout inference and table recognition
methods. Furthemore, with the help of XLIndy, we can expand the
gold standard with new annotated sheets, as outline in Section 3.4.

3.1 Back-end Processes
In an attempt to improve performance and cohesion in the system,
we introduce a local Python service, which sits in between the
front- and back-end components. One of its roles is to prefetch
most of the required code, including custom modules, existing
libraries, and serialized (layout inference) classifiers. This improves
the execution of time of the developed methods, and gives a more
interactive feeling to the user. Nevertheless, during run-time the
operations are performed on-demand, triggered by the client add-in.
The local service, which is running on the background, receives and
then directs the call to the appropriate Python script. Subsequently,

Figure 2: Architecture of XLIndy

it returns the output of the script back to the add-in, which then
displays the results to the user.

3.2 Interoperability
At the moment, the .NET Framework has some support3 for Python
code. However, it lacks many features and libraries that come
with other more popular Python implementations. Therefore, a
workaround is to run Python scripts within processes initiated
from C# code. Subsequently, the standard output of these processes
is parsed, and then displayed to the user.

On the other side, the front-end sends data to the Python scripts,
as well. However, operating systems usually impose limitations on
the number and memory-size of the arguments passed to processes.
To overcome these limitations, for some operations, we use tem-
porary files to store data coming from the front-end. Then, via the
local service we instruct the Python scripts to read these files.

3.3 Efficient Reads
The active Excel document is processed by both ends of the system.
The front-end handles various operations which require read and/or
write permissions. However, read permissions are sufficient for the
back-end, since it only needs to collect features from the active
sheet. To ensure consistency, if there are updates, the front-end will
save the Excel file before making a call to the local service.

Occasionally, we get large documents. Therefore, the back-end
employs an efficient reading mechanism. The .xlsx format is in
reality a zipped directory4 of XML files, which carry information
regarding the cell values, formatting, references, and many other
(detailed in the OOXML standard). Therefore, using the openpyxl5
library, we read only XML files needed for the current task.

3.4 User Experience
Figure 3 provides a brief look at the user interface. It captures the
state of the tool after the layout inference, and right before table
recognition. Using build-in shape objects provided by Excel, XLIndy
displays layout regions as colored coded rectangles, overlaying
non-empty cells of the sheet. In the illustrated example, there is a
misclassification, which the user repairs via the context menu.

3https://ironpython.net/
4http://officeopenxml.com/anatomyofOOXML-xlsx.php
5https://openpyxl.readthedocs.io/en/stable/

DocEng ’19, September 23–26, 2019, Berlin, Germany Koci et al.

Figure 3: UI of the XLIndy tool

At the upper part of Figure 3, we can see a custom ribbon, which
acts as the primary menu for XLIndy. From here, the user car-
ries the majority of the provided functionalities. Starting from the
left, “Cell Classification” and “Table Recognition” sections allow
users to initiate inference and recognition tasks, respectively. The
user selects one of the several supported methods from the drop-
down list, and depending on the desired task he/she clicks “Classify”
or “Recognize”. Once the results are displayed, the user can click
the “Statistics” button, which opens a custom pane providing an
overview of the task performance (see Figure 3). Next, the “Feed-
back” section helps the user navigate the results and revise them,
if needed. After the user has reviewed the results, he/she can save
them as annotations. These are stored in a special hidden sheet of
the Excel document, allowing future reuse [12]. Moreover, from the
ribbon, the user can compare different runs, via the “Compare” but-
ton. This will point to the differences, and emphasize the strengths
and weaknesses of each run. Finally, the "Export" button dumps
data from the selected table areas, in one of the supported formats.

Other panes allow the user to change configurations, before exe-
cuting a task. In this way, users can fine-tune the selected approach,
ultimately achieving the desired accuracy. Figure 3 displays the con-
figuration pane for the genetic-based table recognition [15]. This
pane opened automatically, when the user selected the "Genetic"
method from the drop down list in the ribbon.

Furthermore, XLIndy supports a series of actions via a custom
context menu. This makes certain operations straight forward. For
example, in Figure 3 the user changes the role of a layout region
from Data to Derived. Moreover, from this context menu, the user
can manually create a tablebox (i.e., a rectangle shape with no fill),
to indicate a tabular area. In this way, he/she can correct the table
recognition results. Subsequently, the user can export data from
tables, using the available options from this menu.

4 DEMONSTRATIONWALKTHROUGH
Our presentation will introduce the functionality of XLIndy with a
walkthrough example, as shown here. The audience will load one
of the available spreadsheets, and interact with the user interface,
to complete the whole processing pipeline (detailed in Section 2).
However, we will encourage the audience to experiment with dif-
ferent spreadsheets, from our gold standard dataset [12, 16]. We

cover spreadsheets from companies [10], and others retrieved from
the Web [2]. In this way, the audience can experience first hand
the high variability in spreadsheet contents, and the challenges
that come with it. Additionally, they can test and discover the pros
and cons of the approaches that we propose. To this extend, they
will use the available tools to analyze/compare results and change
configurations (i.e., iterative fine-tuning).

5 ACKNOWLEDGMENTS
This work is supported by the German Federal Ministry of Educa-
tion and Research (BMBF, 01IS14014A-D), by funding the compe-
tence center for Big Data “ScaDS Dresden/Leipzig”

REFERENCES
[1] Marco D Adelfio and Hanan Samet. 2013. Schema extraction for tabular data on

the web. Proceedings of the VLDB Endowment 6, 6 (2013), 421–432.
[2] Titus Barik, Kevin Lubick, Justin Smith, John Slankas, and Emerson Murphy-Hill.

2015. Fuse: a reproducible, extendable, internet-scale corpus of spreadsheets. In
the 12th Working Conference on Mining Software Repositories. IEEE, 486–489.

[3] Zhe Chen and Michael Cafarella. 2013. Automatic web spreadsheet data extrac-
tion. In International Workshop on Semantic Search over the Web. ACM, 1.

[4] Zhe Chen, Michael Cafarella, Jun Chen, Daniel Prevo, and Junfeng Zhuang. 2013.
Senbazuru: A prototype spreadsheet database management system. Proceedings
of the VLDB Endowment 6, 12 (2013), 1202–1205.

[5] Zhe Chen, Sasha Dadiomov, Richard Wesley, Gang Xiao, Daniel Cory, Michael
Cafarella, and Jock Mackinlay. 2017. Spreadsheet property detection with rule-
assisted active learning. In the International Conference on Information and Knowl-
edge Management (CIKM). ACM, 999–1008.

[6] Haoyu Dong, Shijie Liu, Shi Han, Zhouyu Fu, and Dongmei Zhang. [n.d.]. Ta-
bleSense: Spreadsheet Table Detection with Convolutional Neural Networks. In
Association for the Advancement of Artificial Intelligence (AAAI).

[7] Julian Eberius, Christoper Werner, Maik Thiele, Katrin Braunschweig, Lars Dan-
necker, and Wolfgang Lehner. 2013. DeExcelerator: a framework for extracting
relational data from partially structured documents. In the International Confer-
ence on Information and Knowledge Management (CIKM). ACM, 2477–2480.

[8] Wayne W Eckerson and Richard P Sherman. 2008. Q&A: Strategies for Managing
Spreadmarts. Business Intelligence Journal 13, 1 (2008), 23.

[9] David W Embley, Sharad Seth, and George Nagy. 2014. Transforming web tables
to a relational database. In the 22nd International Conference on Pattern Recognition.
IEEE, 2781–2786.

[10] Felienne Hermans and Emerson Murphy-Hill. 2015. Enron’s spreadsheets and
related emails: A dataset and analysis. In the 37th IEEE/ACM International Con-
ference on Software Engineering, Vol. 2. IEEE, 7–16.

[11] Elvis Koci, Maik Thiele, Wolfgang Lehner, and Oscar Romero. 2018. Table recog-
nition in spreadsheets via a graph representation. In the 13th IAPR International
Workshop on Document Analysis Systems (DAS). IEEE, 139–144.

[12] Elvis Koci, Maik Thiele, Josephine Rehak, Oscar Romero, and Wolfgang Lehner.
2019. DECO: A Dataset of Annotated Spreadsheets for Layout and Table Recog-
nition. In the 15th IAPR International Conference on Document Analysis and Recog-
nition. (In Press).

[13] Elvis Koci, Maik Thiele, Oscar Romero, and Wolfgang Lehner. 2017. Table identi-
fication and reconstruction in spreadsheets. In the International Conference on
Advanced Information Systems Engineering (CAiSE). Springer, 527–541.

[14] Elvis Koci, Maik Thiele, Oscar Romero, andWolfgang Lehner. 2019. Cell Classifica-
tion for Layout Recognition in Spreadsheets. In Knowledge Discovery, Knowledge
Engineering and Knowledge Management (IC3K ‘16: Revised Selected Papers), Ana
Fred, Jan Dietz, David Aveiro, Kecheng Liu, Jorge Bernardino, and Joaquim Filipe
(Eds.). Communications in Computer and Information Science, Vol. 914. Springer,
Cham, 78–100.

[15] Elvis Koci, Maik Thiele, Oscar Romero, and Wolfgang Lehner. 2019. A Genetic-
based Search for Adaptive Table Recognition in Spreadsheets. In the 15th IAPR
International Conference on Document Analysis and Recognition. (In Press).

[16] Elvis Koci, Maik Thiele, Óscar Romero Moral, and Wolfgang Lehner. 2016. A
machine learning approach for layout inference in spreadsheets. In IC3K 2016: The
8th International Joint Conference on Knowledge Discovery, Knowledge Engineering
and Knowledge Management: volume 1: KDIR. SciTePress, 77–88.

[17] Cliff T Ragsdale. 2004. Spreadsheet modeling and decision analysis. Thomson
south-western.

[18] Alexey O Shigarov and Andrey A Mikhailov. 2017. Rule-based spreadsheet data
transformation from arbitrary to relational tables. Information Systems 71 (2017),
123–136.

	Abstract
	1 Introduction
	2 Processing Pipeline
	2.1 Worksheet Analysis
	2.2 Layout Inference
	2.3 Table Recognition
	2.4 Information Extraction

	3 System Overview
	3.1 Back-end Processes
	3.2 Interoperability
	3.3 Efficient Reads
	3.4 User Experience

	4 Demonstration Walkthrough
	5 Acknowledgments
	References

