
DrillBeyond: Processing Multi-Result
Open World SQL Queries

Julian Eberius, Maik Thiele, Katrin Braunschweig and Wolfgang Lehner
Technische Universität Dresden

Faculty of Computer Science, Database Technology Group
01062 Dresden, Germany

[firstname.lastname]@tu-dresden.de

ABSTRACT
In a traditional relational database management system,
queries can only be defined over attributes defined in the
schema, but are guaranteed to give single, definitive answer
structured exactly as specified in the query. In contrast, an
information retrieval system allows the user to pose queries
without knowledge of a schema, but the result will be a
top-k list of possible answers, with no guarantees about the
structure or content of the retrieved documents.
In this paper, we present DrillBeyond, a novel IR/RDBMS hy-
brid system, in which the user seamlessly queries a relational
database together with a large corpus of tables extracted
from a web crawl. The system allows full SQL queries over
the relational database, but additionally allows the user to
use arbitrary additional attributes in the query that need
not to be defined in the schema. The system then processes
this semi-specified query by computing a top-k list of pos-
sible query evaluations, each based on different candidate
web data sources, thus mixing properties of RDBMS and IR
systems.
We design a novel plan operator that encapsulates a web data
retrieval and matching system and allows direct integration
of such systems into relational query processing. We then
present methods for efficiently processing multiple variants
of a query, by producing plans that are optimized for large
invariant intermediate results that can be reused between
multiple query evaluations. We demonstrate the viability
of the operator and our optimization strategies by imple-
menting them in PostgreSQL and evaluating on a standard
benchmark by adding arbitrary attributes to its queries.

1. INTRODUCTION
The domains of information retrieval and database sys-

tems have been traditionally kept separate. The reasons for
distinguishing two classes of systems are many: there are
differences in the type of data that is managed, the language
used to query the data as well as the nature of the query
result, among other differences. Concerning the type data,
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SSDBM ’15, June 29 - July 01, 2015, La Jolla, CA, USA
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3709-0/15/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2791347.2791370

X

US 313.2

62.6UK

65.3France

Population

81.4Germany

US

UK

France

Population

Germany

(a)

⨝

customernation region

⨝

!n_name, sum(o_totalprice)

orders

"r_name='Europe'

⨝

πo_totalprice

πn_name

"gdp<100000000

ωgdp

29.1

46.9

avg(o_totalprice)

43.8

27.4

Germany 29.1

43.8Novartis

46.9UK

nation.population

27.4France

nation.n_name

29.1

46.9

avg(o_totalprice)

43.8

27.4

Germany 29.1

43.8Novartis

46.9UK

nation.population

27.4France

nation.n_name

29.1

46.9

avg(o_totalprice)

43.8

27.4

Germany 81.4

313.2US

62.6UK

nation.population

65.3France

nation.n_name

(b)

Figure 1: Existing standalone augmentation queries (a) and
the proposed augmentations operator integrated into rela-
tional query processing (b) returning ranked results

DBMS deal primarily with structured data, while the infor-
mation retrieval systems deal primarily with unstructured
data such as text. Database management systems work with
fully specified queries in a structured language, while infor-
mation retrieval systems accept queries given as a collection
of keywords in the general case. Finally, DBMS return an
exact single answer, while answers in information retrieval
are usually uncertain and therefore a ranked list of possible
answers is returned.
The typical usage scenarios also vary. A DBMS is more
useful in analytic scenarios, but requires a deep understand-
ing of the schema and the data available. An IR system is
more suitable to gathering information from a large collec-
tion of objects, without requiring a priori knowledge of their
schemata or content.
In this work, we explore a new way of merging the two
paradigms for use in ad-hoc analytical querying and self-
service BI. We developed a novel type of hybrid DBMS/IR
system called DrillBeyond, that blurs the line between these
system, in all three aspects mentioned above: type of data
managed, query language used, and nature of the query re-
sult. DrillBeyond processes so called open world SQL queries,
a mix of relational queries on a local database with keyword-
based lookup of additional web data sources that are then
automatically joined and processed in one query. Consider
a simple exemplary scenario using the TPC-H schema[1], in
which a user analyses sales per country. Now consider a case
in which the user wants to limit the scope of his or her analy-
sis to those countries with a high gross domestic product, or

Listing 1 Running Example: Open world SQL query with
added attribute highlighted
select n_name, gdp , avg(o_totalprice)
from nation, customer, orders
where

n_nationkey=c_nationkey
andc_custkey=o_custkey
and gdp > 10.0

group by n_name, gdp

order by gdp desc

GDP. In a typical warehouse scenario, this involves manually
searching a dataset that contains information about GDPs,
moving it through an ETL process, reformulating the query
to contain the predicate and an additional join with the
imported table and finally rerunning the query. Addition-
ally, if the user is not content with the results using this
particular external source, he or she may have to go through
the search and integration process iteratively until a suitable
data source has been found.
For a situational one-of analysis query, this effort could be
reduced if the DBMS’ query language would directly sup-
port looking up and integrating web data sources as part
of its query processing, and allow the specification of such
queries directly in SQL, as shown in Figure 1. Note that
the attribute GDP is not part of the TPC-H schema, and is
specified only using a keyword embedded in the SQL query.
The basic problem with processing this query is to retrieve
the missing attribute, given the entities in the local database,
i.e., the countries in the Nation table, from external data
sources. Recent database research has explored the use of
structured data extracted from the web to augment given en-
tities with additional attributes, a process sometimes called
Entity Augmentation[10]. While there is related work on
processing entity augmentation queries themselves (see Sec-
tion 6), the aspect of integrating entity augmentation queries
into regular relational query processing has not been dis-
cussed previously. Existing literature stresses how automatic
enrichment of user data using web data can help the user
make the most of his or her data, but only considers entity
augmentation on an isolated table, as shown in Figure 1a.
Data analysis tasks however are often based on RDBMS,
and the entity augmentation is not performed in isolation
but in the context of complex SQL queries. DrillBeyond
processes such queries by means of a web data-based entity
augmentation operator as part of its query plans, as illus-
trated in Figure 1b. This operator encapsulates an entity
augmentation query as a subquery of a relational query. Our
proposed system thus utilizes two types of data: both a local
relational database as well as an index of web data sources,
i.e., web tables.
Finally, as we noted above, since the attributes are aug-
mented from a large corpus of heterogeneous web sources,
a user may want to consider several alternative sources. In
the example above, the attribute was specified as just the
keyword “gdp”. However, the real world concept is more
complex, with many variants such as nominal GDP or GDP
based on purchase power parity, different years of validity
and different sources. A user may not even know on the spot

which variant he or she is interested in. Furthermore the
automatic matching system used to match web sources with
the local data, no matter how sophisticated, introduces the
additional uncertainty of possible matching errors.
Information retrieval systems solve this problem of uncer-
tainty in sources and unclear user intent by presenting not
one exact, but multiple, ranked, alternative answers.
For this reason, DrillBeyond answers open world SQL queries
with multiple alternative query results, each based on a differ-
ent external data source, or set of data sources, and presents
the results as ranked alternatives to the user. It therefore
produces structured results of exactly the form specified by
the user query, just as a regular DBMS, but also presents
several possible versions of the result, similarly to an infor-
mation retrieval system.
In this paper, we describe the design of our hybrid DB/IR
system and discuss issues related to integrating an infor-
mation retrieval style operator into an relational database
management system. In particular, our contributions are the
following:
•We designed the DrillBeyond system and its entity augmen-
tation operator, which implements top-k entity augmentation
based on web tables as part of regular query processing.
• We discuss issues regarding placement of this novel opera-
tor with respect to runtime and answer quality, and propose
a cost model as well as plan- and run-time optimization rules.
• We detail how to efficiently process a query multiple times
based on different candidate data sources.
• We explore how the entity augmentation process itself can
be improved through information available in the context of
an SQL query.
• We created a practical implementation of the operator and
our optimizations in PostgreSQL, which allows us to mean-
ingfully evaluate the operator on standard test databases
and fully-featured SQL queries, both regarding runtime and
influence of the techniques discussed above.

Note that we presented an earlier demo version of DrillBe-
yond, focusing on the query model and GUI in [4]. A video
of this original demonstration is still available1.

2. OPEN WORLD SQL QUERIES
In this Section we define the main concept used in this

paper, Entity Augmentation Queries and Open World SQL
Queries, give the semantics of these query types, and discuss
the technical challenges that arise when integrating them
into an RDBMS.

2.1 Top-K Entity Augmentation Queries
So called Entity Augmentation Queries (EAQ) are of

special interest for data analysis. This type of query is
defined by an existing table and an attribute not defined
for this table, the answer consisting of this attribute’s val-
ues for entities in the table retrieved from external sources:
QEA(a+, R(a1, ..., an)) = R(a+). Here, a+ denotes the at-
tribute to be augmented and R the existing relation with
attributes a1, ...an. An Entity Augmentation System (EAS),
is used to answer this type of query. It is responsible for
looking up data sources on the web, matching them to the
existing table, and possibly for merging multiple candidate
sources into one result. These properties make this type of
1https://wwwdb.inf.tu-dresden.de/edyra/DrillBeyond

querying both powerful as well as user-friendly, and thus
interesting for ad-hoc analysis queries.
We discuss this type of query as a subquery of a regular
SQL query. Our definition therefore includes an additional
set of hints H to the entity augmentation system, which are
extracted from the context given by the outer SQL query:
QEA(a+, R(a1, ..., an), H). These hints are used to guide the
search and the ranking of web data sources, which we discuss
in Section 3.4.
Finally, as discussed in Section 1, we argue that users should
be able to choose from a ranked list of possible query re-
sults, as they would with web search. This means that for a
given tuple t ∈ R the system will return a set of k possible
augmented relations: QEA(a+, R,H) = {R(a+)1, ...R(a+)k}.
We do not elaborate on the methods we use to perform the
actual entity augmentation process and the creation of the k
augmentation solutions, but refer the reader to [5]. For this
paper, we assume that a system with the interface defined
above is available, and discuss only the influence SQL query
context on the entity augmentation result.

2.2 Entity Augmentation in SQL queries
As discussed in Section 1, we aim at processing SQL queries

that reference arbitrary additional attributes not defined in
the schema. Note that we require the attribute to be only
specified via a keyword and a local relation using standard
SQL notation, e.g. “nation.population”, with no specific
information regarding data type, or join paths with the local
data. A baseline approach would require the user to manually
retrieve possible data sources for these attributes and apply
existing integration methods to the existing base relations.
Then a standard SQL query over the extended local schema
could be run.
With DrillBeyond, we want to avoid an explicit data retrieval
and integration step, by associating values of these additional
attributes to instances at query processing time. This is
achieved by running one or more entity augmentation queries
at runtime, which can be seen as a new type of subquery
of a regular relational query. Since an entity augmentation
query will return multiple possible augmentations, an Open
World SQL query will, instead of returning of definitive
query answer, return multiple variants of the query result,
each based on different data sources. Additionally we will
show that incorporating entity augmentation directly into
relational query processing can also improve both accuracy
of the augmentation, as well as runtime performance.

2.3 System Integration Challenges
In this section, we identify the main technical challenges

that arise when integrating top-k entity augmentation with
regular relational query processing. We discuss two major
challenging areas: multi-solution query processing and open
world query planning.
Multi-solution Query Processing: Recall that we are
aiming to produce multiple query result versions for a single
user query, each based on different possible augmentations.
The naive way to implement this is to process the query
multiple times, i.e., if k possible augmentations are to be
used, the runtime of the SQL query is increased by this
factor k. This is not acceptable, since it is likely that in
many open world SQL queries, the majority of the processing
time will still be spent processing local data, which does not
change between runs of the query. For example, consider

data.worldbank.org

Exports (% of GDP)
year
nation

value

Trade (% of GDP)
year
nation

GDP current US$
year
nation

value

value

en.wikipedia.org

List of countries by GDP (PPP)

year
nation

value

List of countries by GDP (nominal)

year
nation

value

User Schema + Data

Nation

n_regionkey
n_name
n_nationkey

Region

r_name
r_regionkey

Customer

c_nationkey
c_name
c_custkey

Executor
+ DrillBeyond operator(s)

+ invariant caching
+ runtime reoptimization

R
D

BM
S

Planner
+ new cost model

+ new optimization rules

add transient relations

add DrillBeyond
operator(s)

1

Query Analyzer
+ new rewrite rules

Matching &
Combination Module

Missing Attribute +Instances

Entity Augmentation Query Processor

Candidate Datasets
4

Indexing Module

EA
S 5

6

possible
augmentations

DrillBeyond System

W
eb

 D
at

a
In

de
x

3
EAQ

2

Figure 2: System architecture and high level control flow

again the example open world SQL depicted in Figure 1.
Here, a large part of the work consists of local joins between
the relations Customer and Order, and aggregation of the
local attribute o_totalprice. When processing this query
multiple times based on different augmentations, only the
set of nations that pass the predicate on gdp, as well as the
order of result tuples would change, but not the aggregates
for the individual nations.
Consequently, the a major challenge in including top-k entity
augmentation into relational query processing is to plan and
process a queries in a way that minimizes duplicate work
between query variant executions.
Open World Query Planing: The second challenge arises
from the fact that properties of the joined web tables are
not fully known at plan-time, since they are determined by
the set of entities running through the DrillBeyond operator
at run-time. For instance, estimating the selectivity of a
predicate over an open attribute is not easy, as the set of
sources that will be used is not known at planning-time. The
same holds for determining the open attributes’ metadata,
such as the data type, since we do not require the user to
specify it in the query. The question is thus how to plan
queries with relations only known at run-time.

3. THE DRILLBEYOND SYSTEM
To solve these challenges and enable entity augmentation

queries as part of relational query processing, we designed
the DrillBeyond system. The next sections will detail the
required changes to the RDBMS architecture and query pro-
cessing.

3.1 System Architecture
Processing open world SQL queries requires an entity

augmentation system, a web data index system, and modifi-
cations to three existing RDBMS components: the analyzer,
the planner and the executor. Figure 2 gives an overview of
the changed and new components, and also includes a high
level description of the changes in control flow.

•Web Data Index: Most noticeably, an index of available
web data sources is necessary. Typical entity augmentation
methods based on web tables assume that a large scale cor-
pus of web tables extracted from a web crawl is available.
DrillBeyond does not have special requirements regarding
this index and the system that its managed by: A generic
system that exposes an interface for keyword-based docu-
ment search, e.g. Solr or ElasticSearch, is sufficient.
• Entity Augmentation Subsystem: This component
implements the entity augmentation processing, exposing an
interface as discussed in Section 2.1. It interfaces with the
index system to retrieve web data sources, e.g., web tables,
and the core RDBMS components to provide augmentation
services to the executor and the planner.
• Query Analyzer: The first step in DrillBeyond query
processing is triggered by the query analyzer, which maps to-
kens in the SQL query to objects in the database’s metadata
catalog. Unrecognized tokens, such as gdp in the running
example (Figure 1), lead to an error in a typical RDBMS.
In the DrillBeyond system, we take a minimally invasive
approach: we introduce transient metadata for the duration
of the query, so that the regular analysis can continue. The
query is then rewritten to include an additional join with
a transient relation, effectively introducing a source for the
missing attribute into the query processing, and also paving
the way for the DrillBeyond operator to be placed by the
regular join order planning mechanisms of the DBMS.
• Query Planner: Multi-solution processing requires plans
that minimize the overhead of creating multiple result vari-
ants, while the lack of plan-time knowledge about the data
sources requires plan adaption. We detail our approach to
these problems in Section 4.
• Executor: The executor implements the repeated execu-
tion of operator trees to create the top-k query result, using
the DrillBeyond operator, which we will detail in the next
section.

3.2 The DrillBeyond Operator
In its basic form, the DrillBeyond plan operator, denoted

ω, is designed to resemble a join operator, to facilitate inte-
gration with the existing system architecture. Note however,
that in contrast to a regular join, only one of the joined
tables is known at plan-time, while the other table, as well as
the join attributes are decided at run-time. These run-time
decisions are made by the entity augmentation system based
on the input tuples of the operator. Specifically, the opera-
tor extracts distinct combinations of textual attributes from
input tuples, as these are used to functionally determine the
values of the augmented attribute. In the example query
shown in Figure 1, the set of Nation tuples that reach the
operator determine the input to the entity augmentation
subquery, and therefore determine the web data sources that
are are retrieved.
We will now consider the implementation specifics of the
operator. Algorithm 1 shows the specifics of the state kept in
the operator and the implementations of its iterator interface
and helper functions. The traditional interface functions
Init(), Next() and ReScan() are called by the DBMS during
regular query processing. The first, called before executing
the query the first time, initializes state, specifically a tuple-
store for materializing the lower operator’s output, a hash
table mapping local textual attribute values to augmented
values, and two variables state and n, determining the be-

Algorithm 1 DrillBeyond operator
function Init

state← ‘collecting′

tuplestore← ∅
augMap← HashMap()
n← 0 . Iterations

function Next
if state = ‘collecting′ then

Collect()
Augment()
state← ‘projecting′

return Project()

function Collect
while true do . Retrieve all tuples

t← Next(childP lan)
if t = NULL then

break
tuplestore← t
augKey ← textAttrs(t)
if augKey 6∈ augMap then

augMap[augKey]← ∅

function Augment
augReq ← (∀k ∈ augMap | augMap[k] = ∅)
for all augKey, [augV alues...] ∈ Send(augReq) do

augMap[augKey]← [augV alues...]

function Project
t← Next(tuplestore)
if t = NULL then return NULL
augKey ← textAttrs(t)
t[augAttr] = augMap[augKey][n] return t

function Rescan
state← ‘collecting′

tuplestore← ∅

function NextVariant
ReScan(tuplestore)
n← n + 1

haviour of the operator when Next() is called.
The Next() function produces augmented tuples. This is done
in three phases: Collect(), Augment() and Project(). On the
first call to Next(), since no augmented values are available,
the first two phases are triggered. In the Collect() phase,
the operator pulls and stores all tuples that the lower plan
operator can product, making DrillBeyond a blocking oper-
ator. The reasons for blocking are discussed in Section 3.3.
In this phase, the operator also stores the textual attributes
originating from the augmented relation and its context in
a hash table, to obtain all distinct combinations of textual
values in the input tuples. The concept of augmentation
context is discussed in Section 3.4.
In the Augment() phase, all entries in the augmentation
map that do not yet have values associated with them are
passed to augmentation system as one augmentation context.
After successfully retrieving values for all collected tuples,
the operator is put into the projecting state, and produces
the first output tuple. Output tuples are produced in the
Project() function by replaying the stored tuples and filling
the augmentation attribute by looking up values in the hash
table.
The ReScan() function is called by the DBMS executor when
subtrees have to be re-executed, e.g., in dependent subqueries

or below a nested loop join. Here, the operator empties
its tuplestore and changes state to collect new input, but
keeps its augmentation hash table, to prevent expensive re-
augmentation for values that have already been seen. Finally,
the NextVariant() is an interface extension not seen in typi-
cal RDBMS operators which is necessary for producing the
multi-variant query results as discussed in Section 2. Instead
of dropping the tuplestore, it just calls ReScan() on it and
increases its internal iteration counter n. This makes sure
that in a new execution of the query plan, operators below
the DrillBeyond operator are not called again, but instead
their materialized output will be replayed, and augmented
with the next augmentation variant in the Project() function.
Having discussed the basic operator functionality, we will
now discuss more advanced questions in the next subsections:
why is the operator blocking, where should it be placed in
the query plan, what is its runtime cost and how can it be
optimized?

3.3 Augmentation Granularity
A naive entity augmentation operator would work tuple-

at-a-time, i.e., hand each tuple to the augmentation system
as it receives it. This way, it would be most compatible
to the iterator-based query processing used in most tradi-
tional RDBMS operators, and not need to block. However,
augmenting each tuple on its own implies looking up and
matching web data sources for each tuple on its own. Con-
sider the simplified augmentation example shown in Figure 3,
where the table to be augmented is on top, and the available
web data sources at the bottom. With the tuple-at-a-time
style, the augmentation system may choose ds1, ds2 and
ds4 for the USA, Russia and UK tuples respectively. These
sources match each individual tuple best, and the individual
tuples are what the augmentation system can process in this
case.
Still, we can see that the augmentation system can not per-
form optimally with regard to the query as a whole, as it
is not provided with the overall query context. While the
chosen sources are the best fitting for each individual tuple,
they do not form a consistent answer together, as the units
of currency do not match. If the augmentation system is
instead provided with the set the complete set of tuples as
the input for one augmentation query, the more consistent
solution comprised of ds1 and ds3 can be constructed, even
though the individual entity matches are slightly worse.
We conclude that for reasons of result quality the DrillBe-
yond operator needs to be a blocking operator. This means
it consumes tuples from underlying operators until these
are exhausted, then hands them over to the augmentation
system, and produces the first result tuple only when it re-
turns. Referring back to Algorithm 1, this blocking behavior
is realized in the state “collecting” in function Next().

3.4 Context-dependent Results
Having established the DrillBeyond operator as blocking,

we will now consider the question of where to place it in
a query plan. We noted in Section 3.3 that the augmenta-
tion result is dependent on the set of input tuples to the
augmentation system. However, this is not only affected by
the augmentation granularity, but also the position of the
operator in the graph. For example, consider again the query
shown in Figure 1, and two possible query plans shown in
Figure 4, where ω depicts the DrillBeyond operator. The

Country(GDP(M(USD(

USA$ X$

Canada$ Y$

ds1$–$American$Countries$

Country(GDP(
Russia$?(

UK$?(

USA$?(

En9ty$Augmenta9on$Query$Q(a+,$E)$

Country(GDP(EUR(

Russia$ X$

France$ Y$

ds3$–$World$GDPs$

Country(GDP(Mil.($(

United$
Kingdom$

X$

Russian$
Federa9on$

Z$
ds2$–$European$Economy$

Country(GDP(EUR(

UK$ X$

ds2$–$European$Economy$

Figure 3: Example augmentation problem

γname,sum(totalprice)

./

./

./

ωnation.gdp

Nation

σname=′EUROP E′

Region

Customer

Orders

(a) DrillBeyond first

γname,sum(totalprice)

./

./

ωnation.gdp

./

Nation σname=′EUROP E′

Region

Customer

Orders

(b) Regular join first

Figure 4: Possible drillbeyond operator placements

set of Nation-tuples that reach the operator determine the
input to the entity augmentation subquery, and therefore
determine the web data sources that are are retrieved. In
variant (a), the DrillBeyond operator is executed directly
after the scan of the Nation table, while in (b) it is executed
after the local join and filter with the Region table has been
performed. In the first case, the entity augmentation sub-
query will retrieve, match, combine and rank datasets for all
countries in the local database. Likely, these will be datasets
about the countries of the world. In the second case, the
local join will remove tuples about non-European nations,
so the results of the entity augmentation will be more likely
be based on data sources specifically about Europe. Fur-
thermore, completing the join with the Region table does
not only limit the scope of the query, it also adds context
to each tuple by adding Region’s attributes. So even if the
join would not act as a filter limiting the number of tuples,
adding information about the region name will improve the
accuracy of the augmentation system. For example, while
augmenting a set of City-tuples may be hard and error-prone
because of the ambiguity of common city names such as
“Springfield”, augmenting after a join with a State will be a
more realistic task for the augmentation system.
Therefore, for the DrillBeyond operator ω we can see that
we can see that ωR,a+(σ(R)) 6= σ(R)(ωR,a+). We therefore
define the following placement rule that gives a lower bound
on the placement of the operator.
• Lower Placement Bound: The DrillBeyond operator
augmenting a relation R can only be placed when all filters
on R, e.g., joins and predicates, have been applied.
In other words, DrillBeyond is always applied to the min-
imum number of distinct combinations of textual column
values in the tuples of R, as these determine the matching
process and its result.

3.5 Pushing SQL query context
As mentioned in Section 2.1, context from the outer SQL

query can be used to improve the accuracy and runtime of
the inner entity augmentation query, when compared to iso-
lated augmentation. We already discussed also filter effects
through joins and predicates in Section 3.4. These filters
work implicitly to improve the augmentation quality by nar-
rowing the scope of the augmentation operation, and do not
require any changes to the augmentation system or its API.
However, we can further improve the augmentation by ex-
plicitly pushing additional query knowledge to augmentation
system. Specifically, we push two types of information: type
information and predicates on augmented attributes.
• Type Information: Though the user can specify a data
type such as text or double for open attributes using SQL
syntax, we do not expect those annotations to be provided.
However, in many cases it is possible to infer the type of
the open attributes from the surrounding query by applying
methods of type inference to SQL. We can pass type infor-
mation to the augmentation system, which in turn uses this
type information to restrict the set of candidate data sources
to those matching the open attribute’s type.
Consider again the exemplary query shown in Figure 1. From
the constraint on the gdp attribute it can be inferred that it
must be of a numeric type. This allows the augmentation
system both to reduce its runtime and increase precision by
pruning non-numeric candidate sources.
• Predicates on augmented attributes: In addition to
the data type of open attributes, we can also push the predi-
cates on open attributes themselves down to the augmenta-
tion system. This allows a similar, but more sophisticated,
candidate pruning. We assume that users expect some filter-
ing on the database instance level to happen when specifying
a predicate, i.e., we assume that some domain-knowledge is
encoded in the predicate.
Consider again the exemplary query shown in Figure 1. The
user clearly intends to filter low GDP countries, and has given
a large integer number as the specific condition. Though
the user query is given only with the very general keyword
GDP, by also considering the predicate, the augmentation
system can discard all candidate datasets that give the GDP
as a percentage or rank, because those will not discriminate
the entities with respect to the predicate. In addition to
all-or-nothing filtering, we can use the predicate to improve
the augmentation system’s ranking function. Specifically,
we can check how well the data source’s values fit to the
predicate that will be applied, i.e., how well the data source
discriminates the entities with respect to the predicate. Us-
ing the SQL context, we can thus add the following sub-score
to the scoring functions already in place in our augmentation
system REA (see Section 5.1), given a predicate p and a
candidate data source C:

sp(p, C) =


0 if ¬applies(p, C)∑

v∈C
1.0−| log10 p−log10 v|

|C| if numeric(p)
1.0− (2 ∗ |0.5− sel(p, C)|) otherwise

(1)
Note that we also include a special rule for numeric predicates:
we check whether the predicate value and the average of the
data source’s values are in the same order or magnitude. We
will show the improvements in precision and runtime of the
augmentation system when applying this score in Section 5.

3.6 Cost Model & Initial Placement Strategy
As mentioned, the operator is modeled to resemble a join

from the perspective of the DBMS. We can therefore reuse
the existing join optimization machinery to place the Drill-
Beyond operator. This however depends on a model for the
operator runtime cost and the operator output cardinality.
• Output Cardinality: In the most basic case, the oper-
ator produces exactly as many tuples as its input relation,
as it just adds a single attributes. However, we also must
consider selectivity of possible predicates on augmented at-
tributes. Since at plan-time we do not assume any knowledge
about which web data sources will be used to augment an at-
tribute, correctly estimating selectivity is almost impossible.
We therefore initially use the DBMS default selectivities for
different types of predicates, and employ run-time optimiza-
tions to compensate when more information is available (see
Section 4).
• Cost Model: The operators runtime depends on three
components: The first part is incoming tuple processing,
the second entity augmentation, and the third is projecting
tuples with the augmented attribute (see Algorithm 1). We
can estimate the cost of the operator using a similar model
as for a hash join, as phases one and three, hashing the child
relation, and then probing it against the augmented hash
table correspond to the phases of a hash join. Addition-
ally, there is the cost of phase two, the actual augmentation,
which depends not on the number of tuples, but on the
number of distinct entries in the augmentation hash table.
The processing cost per entry depends on the augmentation
algorithms, and is therefore not easy to model in the con-
text of a generic DBMS cost model. For our cost model we
therefore assume an additional large constant factor C for
the phase two component which, for evaluation purposes, we
learn from previous executions of our augmentation system
(see Section 5).

CostDrb = 2 ∗ |subP lan|+ C ∗ |distinct(subP lan)| (2)

We use the cost model together with the lower placement
bound rule introduced in Section 3.4 to place the operator in
the query plan. The rule is enforced by pruning join orders
in which the operator would be placed before all filters to
the augmentation base relation are applied.

4. PROCESSING MULTI-RESULT QUERIES
So far, we have considered the DrillBeyond operator in

a single query result setting. However, as discussed in Sec-
tion 2.2, we aim at translating the top-k result returned by
our augmentation system into a top-k SQL result.
The naive method, given our operator, is to simply re-execute
the query plan k times, and after each execution trigger the
projection of a new augmentation result from the operator
via the NextVariant() API depicted in Algorithm 1. This
obviously leads to duplicated work , as only the output of
the DrillBeyond operator changes between executions, while
the other parts of the query plan operate the same. Con-
sider the query plan in Figure 5. Here, only the values of
the gdp attribute would change between query runs, while
the operations, notably the more expensive joins with the
Customer and Orders relations and the grouping would not
change. This means that simple re-execution would increase
time to compute the query k-fold, with most of the work

γname,sum(gdp),sum(totalprice)

./

./

σgdp<10000000

ωnation.gdp

./

Nation σname=′EUROP E′

Region

Customer

Orders

Figure 5: Plan Invariants

Sortacctbal

σsupplycost=RightSubP lan

./

./

Supplier PartSupp

Part

γmin(supplycost)

σpopulation>10000

ωpopulation

./

./

PartSuppkey=outer.partkeySupplier

Nation

Figure 6: Invariant Subtrees

being inefficient duplicate work. Our first approach to this
problem is to identify, and then maximize invariant parts of
the multiple executions, and then prevent their re-execution
through materializing intermediate results. As a first ob-
servation, note that all tuple flows below the DrillBeyond
operator can actually never change between executions: in
the example shown in Figure 5, these operators are under-
lined. The cost of those operations can be minimized by
materializing the input to the DrillBeyond operator. This
elementary optimization is is already included in the basic
operator implementation shown in Algorithm 1 in the form
of the tuple store created by the operator. The changing
augmentation output may, however, also influence the result
of other operators further up the query plan. In the example,
the aggregation of the gdp attribute will change its output
between execution. Note however, that even the aggrega-
tion of the regular attribute totalprice is influenced by the
changing gdp values: since the selectivity of the predicate
on gdp may be different in different data sources, the set of
Orders tuples that has to be aggregated may also change
between executions.
The next sections will introduce our optimization strategies
for these problem strategies: invariant caching, augmentation
operator splitting, selection pull-up, partial selection, and
finally, run-time reoptimization.

4.1 Invariant Caching
We already discussed the necessity for materializing in-

termediate results, and introduced the basic caching done
by the DrillBeyond operator itself. However, this is not the
only opportunity for caching. Consider the following query
plan in Figure 6, modeled after TPCH query 2, in which a
dependent scalar subquery (on the right side) is executed
for each tuple of the outer query. A DrillBeyond operator

γname,gdp,sum(totalprice)

./

./

ωnation.gdp

./

Nation σname=′EUROP E′

Region

Customer

Orders

(a)

γname,gdp,sum(totalprice)

ωnation.gdp

./

./

./

Nation σname=′EUROP E′

Region

Customer

Orders

(b)

Figure 7: Influence of DrillBeyond operator placement

and a predicate on the augmented attribute was added in
the dependent subquery. Here, the result of the main query
before the selection is invariant between query results, as
the augmented values only change the result of the filtering
subquery.
In general, operators that have no DrillBeyond operator in
their descendants are invariant.We exploit this using a plan-
ning pass, that inserts materialization nodes into the plan.
The idea is to recursively descend into the query plan, until a
DrillBeyond operator is encountered, which marks all nodes
above it as varying. A node is marked varying if any of its
child subtrees or any subqueries evaluated at the node are
marked varying.
At each varying node, we check whether explicitly materializ-
ing any subtree would be beneficial. A good example would
be intermediate join results, such as the whole left subtree
underneath the top selection in Figure 6. Here, the addition
of an explicit materialization node above this subtree would
speedup further executions of the query plan considerably.
Note, that even a subtree without DrillBeyond operators
may be varying, if it contains parameters, e.g., the inner
side of a nested loop join. In this case, the variability of a
sibling subtree will propagate, as the parameters may change
between executions if the other subtree is varying.
Having introduced our methods for invariant caching as a
first step to optimize multi-result queries, the limits of this
first method have also become clear: we can only cache in-
variant subtrees, and depending on the cost based placement
of the DrillBeyond operator, most of the query may be vary-
ing and thus not amendable to caching. We will therefore
introduce further optimizations in next sections.

4.2 Separating Augmentation
Input and Output

So far we have optimized by caching invariant parts of
the query plan as it is produced by the planner. However,
our planning process as described in Section 3.2 assures only
that the overall order of joins and DrillBeyond operators is
optimal with respect to the cost model, and correct with
respect the lower placement bound. It does not however,
try to maximize the invariant parts of the query. Consider
the following example queries, shown in Figure 7. The first
case (Figure 7a) is optimal with respect to a single query
execution: the operator is applied to the smallest possible
intermediate result, while the lower placement bound, the
join with Region, is adhered to. Still, with respect to multi-
ple execution and the caching mechanisms described above,
the second plan (Figure 7b) is more efficient. By moving
ω up the tree, this plan trades higher cost for executing
the DrillBeyond operator once for a much larger invariant

subtree, which pays off over more executions. While it would
be possible to use an extended cost model that incorporates
the costs for multiple plan executions and thus place choose
the second plan, we can do even better.
The key observation is, that to maximize the invariant parts
of the query plan, the operator should be placed as late as
possible, i.e., not earlier than the augmented values need to
be accessed. This is the upper bound to the ω operator place-
ment. Though a seemingly obvious observation, it enables a
useful optimization: we can separate the input part of the
operator from the actual projection of augmented values.
We split the DrillBeyond operator in two parts, one perform-
ing the augmentation, symbolized with ω, and one doing the
projection of values, depicted as Ω. The ω operator performs
the input hashing and triggers the augmentation process,
i.e., it works through the collect() and augment() phases
of the basic operator implementation shown in Figure 3.2.
However, instead of projecting the actual augmented values,
it projects placeholders, which can be uniquely mapped to
the actual value arrays returned by the augmentation system.
Technically, these can be implemented as pointers into the
augMap hash table that is populated in the augment() phase.
These placeholders traverse the operator graph until the Ω
operator, which dereferences to the correct value array, and
projects a single augmented value depending on the current
query iteration, i.e., the current n in Algorithm 1. We place
Ω at exactly the upper placement bound defined above, and
ω above the lower placement bound, minimizing augmenta-
tion operator cost and maximizing the size of the invariant
query parts.
This optimization provides more efficiency gains, but is still
limited by the first access to the augmented attribute in the
query plan, i.e., its effect is based on the distance between ω
and Ω. We will therefore explore more optimizations that
delay the first access to an augmented attribute: selection
pull-up and partial selection.

4.3 Selection Pull-Up
The strategy of projecting augmented attributes as late

as possible is in conflict with one of the more fundamental
classic optimizations, namely selection push-down. For ex-
ample, if a predicate on the augmented attribute is given,
it would make sense to evaluate this predicate as soon as
possible, i.e., directly after ω, to limit the size of intermedi-
ate results, as done in traditional query optimization., i.e.,
. . . ./ (. . . ./ σa+(ωa+(R)). This however means that our
ω / Ω split cannot be applied anymore, since augmentation
and first access to the values coincidence, i.e., we would have
. . . ./ (. . . ./ σa+(Ωa+(ωa+(R))), eliminating all benefit of
the split. We therefore have to decide between two alterna-
tives, depicted in Figure 8: traditional selection push-down
at the cost of having more varying nodes in the plan, or the
opposite approach: selection pull-up. With this method, we
place Ω as described in Section 4.2 while ignoring predicates
on the augmented attribute, i.e., before the first other access.
The trade-off in this case is between smaller intermediate join
results with the plan in Figure 8a and larger but invariant
joins in Figure 8b. Which plan is to be favored depends on
the selectivity of the predicate on the augmented attribute.
We thus employ a cost-based approach to decide on whether
to use selection pull-up. Two questions are to be answered:
what cost model to base this decision on, and how to estimate
the selectivity of the predicate. Concerning the cost-model:

γname,gdp,sum(totalprice)

./

./

σgdp<X

Ωnation.gdp

ωnation.gdp

./

Nation σname=′EUROP E′

Region

Customer

Orders

(a)

γname,gdp,sum(totalprice)

σgdp<X

Ωnation.gdp

./

./

ωnation.gdp

./

Nation σname=′EUROP E′

Region

Customer

Orders

(b)

Figure 8: Selection Pull-up and influence on invariants

since we have a binary decision we only need to compare
the results of two suitable models and pick the cheaper plan.
We use the following two models for the cost of the subtree
above the ω:

Ck(ω,>) =
{
C1(ω,Ω) +

∑k

i=1 si · C1(Ω,>) (Pull-Up)∑k

i=1 si · C1(ω,>) (no Pull-Up)

Here, Ck is the cost of k plan executions, si the selectivity of
the i-th data source for the attribute in question, and C(x, y)
denoting the cost of the subplan from operator a until to
operator b. With selection pull-up, we have to pay the price
for the subplan between ω and Ω only one time, but with
selectivity 1.0, as no predicate is applied. The rest of the
plan, from Ω to the result, has to be executed k-times, but
with the predicate applied. Without pull-up, the selection is
applied early, but the whole plan is executed k-times.
The cost of the partial queries can be calculated from the
normal query optimizer output, the k is user-defined and
fixed, but what about the selectivities si?
As discussed in Section 2, we have no knowledge at plan-
time about which data sources will be used, and thus can
not easily estimate their selectivities. Instead of deciding
the selection placement at plan-time when selectivities are
hard to estimate, we therefore make the decision at run-time,
specifically after the augmentation system has returned, i.e.,
in the augment() phase shown in Algorithm 1.
With the selectivities known, the ω operator decides using
the cost-models defined above whether to project real values
and perform the selection, in which case Ω operator becomes
a dummy, and further executions must recalculate all opera-
tors in the (ω,Ω) range, or whether the selection is pulled
up, and it emits only placeholders as described in Section 4.2.

4.4 Partial Selection
In the previous section, we discussed the trade-offs between

intermediate result cardinalities and plan invariability that
result from position of selection operators. In this discussion,
pulling or pushing the selection was a binary decision: either
execute the selection at ω, or at the corresponding Ω operator.
This assumed that the web data sources used for the different
augmentations are completely independent, i.e, that they
will always lead to varying intermediate results. However,
for many augmentation queries, the sources may actually
agree on whether a predicate holds for a certain tuple. We
can therefore introduce a partial selection operation, which
selects all tuples for which the selection predicate holds in
any of the available augmentations.

sp(R) = {t ∈ R | ∃i ∈ (1..k) P (t[a+i]))}

Here, a+i denotes the augmented attribute in its i-th possible
variant. The selectivity of this operation depends entirely
on the correlation between the sources with respect to the
predicate. It may range from being equal to the selectivity of
the individual sources if they completely correlate, to being
1.0 if the predicate holds for every tuples in at least one
variant.
Even though the effect varies, it can be lead to better query
performance because we may perform partial selection at
the ω operator, while still returning an invariant result. It
can therefore be combined with selection pull-up described
in Section 4.3, by returning placeholder values for tuples
that pass the partial selection, and performing the data
source-dependent final selection at the Ω operator.

4.5 Runtime Reoptimization
The optimizations proposed so far where concerned with

optimizing the plan regarding invariants and selectivities.
Dynamic selection pull-up even allows to adapt the plan
at run-time, depending on the selectivity of predicates on
augmented attributes. However, if the actual selectivity is
very different than the one used for initial planning, there
may be more optimization potential than just the placement
of the selection operation. For example, the original choice
of access paths for base relations, e.g., index vs. table scan,
may be suboptimal with respect to the actual selectivity.
We therefore use a form of adaptive query processing: When
executing a query, DrillBeyond always starts execution at the
subtrees below ω operators, to be certain about selectivities
as early as possible. DrillBeyond then invokes the planner
to create a new plan using the better selectivity estimate.
At this point, either the average selectivity of the k aug-
mentations or the selectivity of the partial selection over
all augmentations (Section 4.4) can be used as an estimate.
This decision depends on whether selection pull-up will be
used with the new plan, and can be made using the selection
pull-up cost model (Section 4.3) . The already executed
subtrees underneath the ω nodes are then merged into the
new plan, to make sure that materialized intermediate results
and especially the results of the augmentation operation are
reused with the new plan.

5. EVALUATION
In this section we present the results of our experimental

study on efficiency of open world SQL query processing in
the DrillBeyond system. We study the performance of the
DrillBeyond relational operator in general, and the influ-
ence of our optimizations in particular: intermediate result
caching, the ω/Ω split, selection pull-up and partial selection
and run-time reoptimization. We also study how the use
of SQL query context, especially predicate push-down to
the augmentation system, can improve both augmentation
quality.

5.1 Experimental Setup
In Section 3 we introduced our system architecture con-

sisting of three components: the actual modified RDBMS,
an augmentation system and a web data source index. As
mentioned above, the augmentation system and web data
corpus used are previous work. Still, we introduce the other
components as well, to give a complete picture of the experi-
mental setup.

Implementation: We implemented the operator described
in Section 3 and the optimizations described in Section 4 into
the PostgreSQL open source RDBMS and made it available
on GitHub2. The optimizations discussed in Section 4 can
be turned on and off individually, to study their individual
performance impact. The augmentation system we employ is
the REA system presented in [5] also available open source3.
It creates a top-k list of possible attribute augmentations for
a set of entities, based on a list of candidate data sources. For
this paper, it was extended to be able to accept predicates as
query hints to guide the search for data sources, as described
in Section 3.5. To provide a list of candidate sources for the
augmentation, we use an index over our Dresden Web Table
Corpus (DWTC)4. This corpus contains 122M Web tables
extracted from the Common Crawl5, a publicly available
Web crawl.
Test Database: Throughout the paper we used TPCH-
based examples. Most relations in TPCH, such as Supplier
and Part carry only artificial identifiers, i.e., “supplier_1”
or “part_1”, and can therefore not be extended with ex-
ternal data due to their lack of real-world identity. We
use two different ways to address this issue: First, for the
pure performance experiments that test our query processing
optimizations, we use an entity augmentation system that
generates artificial data instead of looking it up on the web.
This also has the advantage that we can exactly specify prop-
erties of the returned augmentations, such as selectivities and
correlation between augmentations, to test various aspects
of query processing.
Second, for the quality related experiments, we created a
variation of TPC-H, which replaces generic identifiers with
real-world entities. For example, the names in the Supplier
relation are replaced by real company names crawled from
the web.
For all experiments, we used TPC-H with scale factor 1.0.
Test queries: We focus on a subset of the TPC-H queries
in which dimension tables are used, as fact tables such as
Lineitem or Orders do not contain information about real
world entities that could be augmented. We added arbitrary
attributes to one of the dimensions, by adding a where-clause
of the form “relation.X > Y” to each query. For the per-
formance experiments, X and Y are arbitrary, since we use
generated augmentation data with specific selectivities for
these experiments. For the quality experiments we will give
specific (relation, attribute, predicate)-tuples in the respec-
tive sections.
Parameters: The main parameters are k, the number of
augmentations and thus the number of SQL results to be
produced for a query, and s, the selectivity of the predicate
on the augmented attribute. If not stated differently, the we
perform each experiment for the each k ∈ (1, 3, 5, 10) and
ten different levels of selectivity s, ranging between 0.01 and
0.99.

5.2 Performance
With the experimental setup and parameters as described

above, we measured five different configurations of DrillBe-
yond to test the optimizations introduced in Section 4. The
configurations are:
2http://github.com/JulianEberius/DrillBeyond
3http://github.com/JulianEberius/REA
4http://wwwdb.inf.tu-dresden.de/misc/dwtc
5http://commoncrawl.org

2 3 5 8 9

1
0

1
4

1
6

1
7

Adapted TPCH Query

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
o
rm

a
liz

e
d
 E

x
e
cu

ti
o
n
 T

im
e
 (

1
.0

 =
 m

in
)

No Optimizations

Invariant Caching

Static /

Dynamic /

Dynamic / + ReOpt.

Figure 9: Overview of normalized execution times by query

• No Optimization: The query is planned using just the cost
model introduced in Section 3.6 and default selectivity esti-
mates. This means the query is planned for one execution,
and not optmized for producing multiple results.
• Invariant Caching: In this configuration we enable the
caching of invariant plan subtrees, as described in Section 4.1.
• Static ω/Ω: This configuration introduces the split between
the augmentation operator ω using the cost model and the
projection operator Ω placed at the first attribute usage, as
introduced in Section 4.2. In this context, “static” means
that the selection is always performed at the Ω operator,
making most of the plan invariant, but also not utilizing the
selectivity of predicates.
• Dynamic ω/Ω: This configuration introduces dynamic, run-
time placement of the selection at either ω or Ω, as described
in Section 4.3.
• Dynamic ω/Ω + ReOpt.: In this configuration, we enable
the reoptimization of the remainder of the query plan after
ω is executed, as introduced in Section 4.5.
Figure 9 shows the results using normalize execution runtime,
i.e., all times are given as multiples of the fasted configura-
tion in each individual measurement. The numbers in this
overview are aggregated by query, i.e., aggregated over all of
k and all s.
The first major observation is that the various optimization
techniques respond quite differently to different queries. For
example, invariant caching alone is almost good enough for
Q8, the other techniques do not improve the significantly,
runtime reoptimization even introduces a small overhead in
this case. Still, in all other cases, invariant caching alone is
not enough. Introducing the Ω operator with static selection
improves most queries considerably, by making most of the
plan invariant. However, some queries, such as Q9 and Q10,
can profit so much from a selective predicate, that a static
placement of the selection at Ω looses much optimization
potential. In these cases, the basic invariant caching ap-
proach is even better, even though it re-executes more plan
nodes, because it can execute the predicate directly at ω.
Focusing on the dynamic configurations, we can see that
these improve even more queries, as they can dynamically

Scenario Normalized
Execution Time

Standard
Deviation

No Optimizations 2.27 1.82
Invariant Caching 1.99 1.59
Static ω/Ω 1.79 2.35
Dynamic ω/Ω 1.21 0.67
Dynamic ω/Ω + Re-Opt. 1.13 0.28

Table 1: Normalized execution time, average and standard
deviations

place the predicate execution depending on k, and even s.
However, we can also see that introducing a new cost-based
dynamic decision into query processing also introduces some
new uncertainty. For example, while the dynamic selection
approach without plan reoptimization produces the best plan
in Q10, it is even worse than static selection in queries Q2,
Q3 and Q5. Finally, run-time reoptimization, which should
lead to the best query plans in theory, is not globally optimal
either, as seen in Q10. However, in Table 1, we can see that
while the reoptmization method does not gain much to the
dynamic approach in average, its result show a considerably
lower standard deviation, i.e., it produces more conservative
plans.
To give an insight of how the observed aggregated effects
arise, Figure 10 shows absolute execution times for a sin-
gle query, Q9, plotted by selectivity of the predicate, and
once for each k ∈ (1, 3, 5, 10). We can clearly observe the
difference between pushing or pulling the selection on the
augmented attribute. In the invariant caching case, selection
is performed early at ω, which is faster for low selectivities
and low k. With more repeated query executions, e.g. for
k = 10, the higher variability in the plan makes this strat-
egy infeasible. In contrast, in the case of static selection at
Ω, most of the plan becomes invariant, and thus repeated
executions are not very costly. However, this strategy can
not benefit from low selectivities. The dynamic switching
combines the benefits of both variants, although the cost
model is not perfect: selection pull-up is chosen slightly to

0

10

20

30

40

50
E
x
e
cu

ti
o
n
 T

im
e
 (

s)
k = 1

0

10

20

30

40

50

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

k = 3
Invariant Caching

Static /

Dynamic / + ReOpt.

0.2 0.4 0.6 0.8

selectivity

0

10

20

30

40

50

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

k = 5

0.2 0.4 0.6 0.8

selectivity

0

10

20

30

40

50

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

k = 10

Figure 10: Execution time for query 9, by selectivity

1 2 3 4 5 6 7 8 9 10
k

0

1

2

3

4

5

6

7

8

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

Dynamic /

Dynamic / + Partial Selection
0.0

0.2

0.4

0.6

0.8

1.0

S
e
le

ct
iv

it
y

Average Sel.

Union Sel.

(a) gdp > 60.0

1 2 3 4 5 6 7 8 9 10
k

0

1

2

3

4

5

6

7

8

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

Dynamic /

Dynamic / + Partial Selection
0.0

0.2

0.4

0.6

0.8

1.0

S
e
le

ct
iv

it
y

Average Sel.

Union Sel.

(b) population > 1E8

Figure 11: Effects of partial selection

early in this query.
Finally, we want to study the effects of partial selection,
as introduced in Section 4.4. As mentioned in Section 5.1,
our main performance experiments have been carried out
with generated augmentations, so that all levels of selectivity
could be easily observed. Since partial selection depends
mostly on the correlation between the data sources that the
augmentations are based on, it is more interesting to study
with augmentations using real web data. So for the next
experiment, we used our web table retrieval & matching
system REA (introduced in Section 5.1). We used one SQL
query, similar to TPC-H query 5:

select n_name, <attr> , sum(...)
from nation, customer, orders, supplier, lineitem
where

...
and <attr> <predicate>

group by n_name, <attr>

order by <attr> desc

We evaluated this query with two different (attribute, predicate)-
pairs: (gdp, >60) and (population, >1E8), and the results
are shown in Figure 11. In this figure, the x-axis shows k,
the number of augmentations requests, while the first y-axis
shows the execution time with and without partial selection.
Finally, the second y-axis shows both the average selectivity
over all augmentations, as well as the union selectivity as
defined in Section 4.4.
The union selectivity can be understood as the ratio of tuples
that pass the predicate in at least one of the augmentations.
In the first case we can see the effect of the number of

Concept Attribute Predicate
company employees >50000
company founded <1900
company revenue >100
company revenue growth >10.0
country population >1E8
country population growth >2.0

Table 2: Concepts, attributes and predicates used in precision
evaluation

(co
mpany, e

mployees)

(co
mpany, fo

unded)

(co
mpany, re

venueGrowth)

(co
mpany, re

venues)

(co
untry

, p
opulatio

n)

(co
untry

, p
opulatio

nGrowth)
0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

None

IsNumeric()

Range

Figure 12: Changes in precision by type of predicate used

augmentations on union selectivity. Although the average
selectivity rises slowly until 0.65, the union selectivity rises
more quickly and reaches 1.0. This means that as k rises,
even though in all augmentations only a subset of nations is
selected, all nations are selected at least once.
However, as shown in Figure 11, as long as the union selectiv-
ity is below 1.0, the runtime can be improved proportionately
using partial selection. Whether this is the case depends en-
tirely on the correlation between data sources used. Consider
Figure 11b, which shows the much less ambiguous query for
“population”. In this case, all augmentations agree on which
countries have more than 100 million inhabitants, which
leads to equal average and union selectivity. This allows to
save a corresponding amount of work in query processing, as
large parts of the database never need to be touched.

5.3 Augmentation Quality
For the next experiments, we again used the REA sys-

tem, and extended it to handle predicates on augmentation
attributes as guides for the web tables search and scoring
process. Following our discussion in Section 3.5, we first
added type information as a query hint, by implementing an
“IsNumeric” predicate in REA. This allows DrillBeyond to
signal REA that the augmented attribute should be numeric,
which in turn allows REA to filter non-numeric web table
columns from its search. In a second step, we allowed range
predicates to be passed to REA, which uses the equation
given in Section 3.5 to improve its data source ranking.
With this improved REA we ran a subset of the precision
tests given in the original REA paper [5]. The set of concepts
and attributes used, as well as the predicates we added to
test predicate hints are shown in Table 2. Except for the
added query hints, all of the precision evaluation setup was
the same as in [5]. The results are shown in Figure 12. We
can see that adding type information and range predicates

improves precision, although the changes are notable only
in some domains. For example, in the “employees” domain,
the effect was mostly due to filtering web tables that gave
information about local branches of the queried companies,
giving either no numbers, or low numbers in relation to the
query predicate.

6. RELATED WORK
DrillBeyond build upon methods for automatic, web table-

based entity augmentation. A notable first example of such
work is [2], which described a set of basic operators that fa-
cilitate the integration of many structured data sources from
the web. One of these operators, called Extend, attempts to
find matching Web tables for a requested attribute and an
existing table. However, it considers these operators tools
to be used and combined manually by a user in information
gathering, and not as components of a larger system, such
as an RDBMS.
InfoGather [10] improved the state of the art especially by
identifying more candidate tables than the naïve matching
approach, by introducing Web table similarity measures and
identifying tables indirectly matching the query through
them. In a follow-up paper [12], the system was extended to
explicitly assign labels for time and units of measurements
to tables, allowing for more targeted retrieval of specific at-
tribute variants. While these two systems improve much on
the accuracy of entity augmentation, they do not consider
integration of this operation within more complex (SQL)
queries.
Our REA system [5], which forms the basis for our Drill-
Beyond implementation, extends those systems by allowing
top-k entity augmentation instead of single answer augmenta-
tion. This gives users a new way to deal with the ambiguity
of web data-based query results by offering alternative so-
lutions. Apart from these systems, there are many more
works that employ web tables for various purposes, such as
materializing tables from keyword queries [9], or answering
single fact queries [11].
A second area of related work is about integration of new
data sources or new types of data into traditional RDBMS.
CrowdDB [6] is a very similar system to DrillBeyond in that
it also enables open-world queries in a classic relational con-
text. It employs a crowdsourcing approach to complement
missing values or tuples. In contrast to that, the DrillBe-
yond system retrieves them in a semi-automatic fashion from
structured open web tables.
The MCDB system [8] deals with Monte Carlo simulations
in an RDBMS context. In this context it also deals with
multiple variants of tuples, and employs a technique called
“tuple bundling”, in which the variants of a tuple can be
bundled into one tuple when the common attributes need to
be accessed, and unbundled into its variants when varying
attributes to be processed. This is similar to our idea of the
ω/Ω splitting of the DrillBeyond operator.
Furthermore there is a class of work on multi-query optimiza-
tion, that tries to reuse intermediate results from previous
queries to speed up to execution of current ones, for example
[13]. This is similar to our invariant caching. Finally, the
DrillBeyond system uses techniques known from the field
of adaptive query processing [3][7], such as run-time reopti-
mization, to deal with the lack of knowledge about the data
sources at plan-time.

7. CONCLUSION
In this paper, we presented the DrillBeyond system, an

RDBMS / IR hybrid system, that processes SQL queries in
which a user may add arbitrary attributes, that need not to
be defined in the existing database. DrillBeyond processes
these queries by tightly integrating a top-k entity augmenta-
tion system, that searches a large corpus of web data sources
for possible ways to augment the local relations with the
missing attributes. To solve the uncertainty and ambiguity of
such an automated integration process, DrillBeyond answers
these queries with multiple alternative query results, each
based on different external data sources.
We discussed integration challenges and design choices when
integrating the two types of systems, and proposed various
optimization techniques to minimize the overhead of process-
ing multi-variant SQL queries. We implemented the system
in PostgreSQL and evaluated it on modified TPC-H queries,
showing how our optimizations allow for efficient multi-result
processing.

8. REFERENCES
[1] TPC Benchmark H. http://tpc.org/tpch, 2015.
[2] M. J. Cafarella, A. Halevy, and N. Khoussainova. Data

integration for the relational web. VLDB, pages
1090–1101, 2009.

[3] A. Deshpande, Z. Ives, and V. Raman. Adaptive query
processing. Found. Trends databases, 2007.

[4] J. Eberius, M. Thiele, K. Braunschweig, and
W. Lehner. Drillbeyond: Enabling business analysts to
explore the web of open data. VLDB, 2012.

[5] J. Eberius, M. Thiele, K. Braunschweig, and
W. Lehner. Top-k entity augmentation using consistent
set covering. SSDBM, 2015.

[6] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh,
and R. Xin. CrowdDB: answering queries with
crowdsourcing. SIGMOD, pages 61–72, 2011.

[7] Z. G. Ives, D. Florescu, M. Friedman, A. Levy, and
D. S. Weld. An adaptive query execution system for
data integration. In SIGMOD, 1999.

[8] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. Jermaine,
and P. J. Haas. Mcdb: A monte carlo approach to
managing uncertain data. In SIGMOD, 2008.

[9] R. Pimplikar and S. Sarawagi. Answering table queries
on the web using column keywords. VLDB, pages
908–919, 2012.

[10] M. Yakout, K. Ganjam, K. Chakrabarti, and
S. Chaudhuri. Infogather: entity augmentation and
attribute discovery by holistic matching with web
tables. In SIGMOD, pages 97–108, 2012.

[11] X. Yin, W. Tan, and C. Liu. Facto: a fact lookup
engine based on web tables. In WWW, pages 507–516,
2011.

[12] M. Zhang and K. Chakrabarti. Infogather+: semantic
matching and annotation of numeric and time-varying
attributes in web tables. In SIGMOD, pages 145–156,
2013.

[13] J. Zhou, P.-A. Larson, J.-C. Freytag, and W. Lehner.
Efficient exploitation of similar subexpressions for
query processing. In SIGMOD, 2007.

