
Remote Direct Memory Access as Communication Tier for
Disaggregated Database Systems

Andreas Geyer, Alexander Krause, Dirk Habich, Wolfgang Lehner
Technische Universität Dresden
first.last@tu-dresden.de

ABSTRACT
Disaggregated systems form a new trend of composable
hardware. Efficiently leveraging this kind of volatile hard-
ware requires a database system to be flexible on all layers,
especially in data transfer. Within this paper, we present
our view on database systems using disaggregated hardwa-
re. Further, we will show how the fast and reliable Remote
Direct Memory Access (RDMA) interconnect can be used
to define an efficient communication layer and how multi
buffering can solve performance problems in contrast to tra-
ditional single buffer messaging.

Keywords
RDMA, Disaggregated Systems, Message passing

1. INTRODUCTION
The amount of data that needs to be highly available

grows larger every day. Therefore, many companies tend to
store their data in any kind of database system. While the
amount of data grows, the access time should stay as small
as possible. To achieve this, many database systems keep
the highly available data completely in main memory. The-
se systems are also called in-memory database systems.

Fulfilling this ever-growing need for main memory with a
reasonable cost in energy and money becomes increasingly
difficult. It is possible to have scale-up systems with several
Terabytes of main memory, but these are very expensive to
buy and operate [5]. However, traditional scale-up systems
suffer from two core problems: (i) they have to be high-
ly utilized most of the time to amortize their cost and (ii)
they can only scale to the initially bought hardware. If ac-
tual workload peaks exceed this limit, there are no spare
resources to utilize. On the other hand, the classical scale-
out system is more favorable in terms of upfront costs and
scalability, which makes it a more suitable approach for data
centers. This approach allows every worker node to consist of
different hardware components, which allows for a bit mo-
re flexibility, let alone the possibility to enable or disable

33th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 08.06.2022, Dresden, Germany.
Copyright is held by the author/owner(s). Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0)..

additional machines, according to the current workload re-
quirements. However, the scale-out systems can suffer from
underutilized hardware as well [3]. It is possible to shutdown
unused nodes, but if a node is running, it generates cost in
any form. Thus, scale-out systems provide a higher degree
of freedom in terms of customizability.

The principle of disaggregated systems takes this approach
to a new level, by improving on the available degree of free-
dom but keeping the cost proportional to the used resources.
The basic idea is to move away from the traditional Von-
Neumann-Architecture in a way, that hardware components
are stored in disjunct units. Thus, there are server racks
solely consisting of CPUs, GPUs, RAM, SSDs, etc., which
allows a system admin to freely assign resources, based on
the current needs. With this configurability in mind, it is
possible to e.g. dynamically allocate or deallocate CPUs, if
more or less compute power is needed for a given workload.

One approach for such a separation of components is pro-
posed in [7], where CPU, RAM and storage are separated
and connected via network. The authors proposed an own
operating system to manage the disaggregated hardware.
However, this disaggregation approach brings several chal-
lenges with it. First, there has to be a fast and reliable com-
munication interface between the components to achieve a
high overall performance. After all, the common PCI inter-
connect is considerably faster than Ethernet and every other
method will be compared to it. Second, the widespread re-
sources have to be managed by some governing instance.
This includes the distribution of resources to the processes,
the logical pairing of components for processes and the ma-
nagement of the components themselves.

Within this paper, we propose our vision of a database
system architecture, based on disaggregated hardware. To
achieve this, we present our core contributions as follows:

1. First, we present our envisioned system architecture
with its necessary components in Section 2.

2. Further, we tackle the first challenge by providing our
implementation ideas for a fast and reliable communi-
cation layer. Thus, we explain the benefits of RDMA1

and our (multi-)buffer messaging interface in Section 3.
3. Third, we prove the viability of our approach by

thoroughly evaluating different communication buffer
combinations in Section 4.

This paper is then concluded with a discussion of related
work and a summary in Sections 5 and 6, respectively.

1https://docs.nvidia.com/networking/display/
RDMAAwareProgrammingv17/RDMA+Aware+Networks+
Programming+User+Manual

https://docs.nvidia.com/networking/display/RDMAAwareProgrammingv17/RDMA+Aware+Networks+Programming+User+Manual
https://docs.nvidia.com/networking/display/RDMAAwareProgrammingv17/RDMA+Aware+Networks+Programming+User+Manual
https://docs.nvidia.com/networking/display/RDMAAwareProgrammingv17/RDMA+Aware+Networks+Programming+User+Manual


SU CU 1

RAM RAM

CPU CPU CPU CPU CPUCPU

IB
SSD SSD SSD NIC NIC

CU 2

RAM

GPU

NIC

CU n

RAM

CPU CPU CPU

NIC

IBIB

Figure 1: Draft of our disaggregated system architecture.

2. SYSTEM ARCHITECTURE
In this section, we introduce our vision of a composable

data processing system, based on disaggregated hardware.
As outlined in Section 1, we target a hardware environment,
in which we can allocate and deallocate components like
additional CPUs or storage units. Without loss of generality,
we assume the existence of two distinct unit types, namely a
compute unit (CU) and a storage unit (SU), with the overall
architecture being sketched in Figure 1. We understand a CU
as a piece of hardware, that consists of a number of CPUs
and some attached main memory, i.e. DRAM. The CU is
responsible for all the heavy lifting, e.g. query processing
for a database system. Contrary, the SU mainly consists of
storage media, such as SSDs. The SU holds all the data
and provides requesting CUs with the necessary information.
Obviously, the SU is also equipped with a CPU and some
DRAM, however the computational power of an SU is very
limited, compared to the CU.

A composable system consists of at least one CU and at
least one SU, however usually multiple CUs and only ve-
ry few SUs are present. The units are connected through a
high performance interconnect, such as Infiniband (IB) via
Network Interface Controllers (NICs). CUs and SUs com-
municate via this interconnect using RDMA, which allows
for high bandwidth data exchange and the eponymous re-
mote direct memory access. Generally, additional CUs can
be enabled or disabled, if the current workload requires ad-
ditional or fewer resources, respectively.

Data processing systems require a multitude of com-
ponents or layers, e.g. storage, communication or processing.
One of the most crucial tasks is getting the data from the
storage to the actual computation. Scale-Up and Scale-Out
systems usually employ the near-memory processing para-
digm, to reduce inter-socket or inter-machine data transfer.
However, a disaggregated system featuring our envisioned
topology does not exhibit the luxury of completely avoiding
data transfer between units. This implies, that a CU has to
fetch data from the SU, for every query that is being proces-
sed, if no particular caching optimizations are applied. We
thus conclude that an efficient inter-unit communication is
crucial for the overall system performance. Therefore, as a
general and crucial building block, we focus on the deve-
lopment of a communication strategy via RDMA for data
systems in this paper.

2.1 RDMA Basics
As previously mentioned, RDMA is a way of accessing the

Send Region Receive Region

Operation Code

Figure 2: Single RDMA communication buffer layout.

main memory of another unit via the IB connection. There
are two possibilities on how to use RDMA. The first one
is a Send-Receive type of communication, described as two-
sided-communication. It involves the CPU of both sides to
communicate data, since both sender and receiver need to
issue a send or receive request, respectively. The primitives
for that are RDMA SEND / RECEIVE. In contrast, the
one-sided-communication uses the RDMA WRITE / READ
instructions, which only involve the CPU of one side, i.e. the
one issuing the instruction. Both have their own advantages
and disadvantages.

To reduce the overall influence of the communication on
the CU, we first implemented the one-sided communication
scheme and leave the two-sided version for future work. The
basic principle of RDMA is, that every participant has to
create a local buffer and register it as memory region. The
involved machines will then have to exchange some metada-
ta, e.g. the buffer pointer, identifiers, keys, etc. to be able
to read from or write to the memory region of the other si-
de. This initial handshake is usually performed via a TCP
connection, which requires some sort of a client/server ar-
chitecture. Conceptually, both CU and SU could play either
role, however we figured that the SU is more suitable as
a server. That is, since the SU would wait for incoming re-
quests of newly enabled CUs to register their RDMA buffers
accordingly. After successfully exchanging the meta informa-
tion, the TCP connection is closed, and all following com-
munication is done via RDMA through the created buffers.

2.2 Buffer management
Intuitively, we would create a single zero-initialized buffer,

that is used for both sending and receiving data. For our
initial testing, we employed the buffer layout as shown in
Figure 2. To allow a two-way access, the buffer is split in
half, yielding a sending and receiving part. A receiving unit
would have to read its receive buffer part and probe, if it
contains any usable information. As soon as the first 8 Bytes
of the buffer, i.e. a processor word of a 64-bit system, contain
something other than a zero-value, we can start reading that
message and consume it. However, we could then potentially
read an in-flight message, which is still in the process of
being written, because the local read bandwidth is obviously
higher than the RDMA write bandwidth. To circumvent this
issue, we introduced the operation code as the very first byte
of both the send and receive region. The local reader only
has to check that first byte to realize the reception of data,
since this byte can be atomically written after the whole
message has been transferred.

However, the single buffer approach inhibits the potential
data transfer performance. If we only write one package to
the receiver, no issue arises. As soon as multiple packages
have to be transferred, the sender has to wait for the re-
ceiver to process it, clear the receive buffer and notify the
sender, that a new package can be sent. To avoid the implied



SU CU

Send-Buffer

Receive-Buffer

Send-Buffer

Receive-Buffer

RAM RAM

CPU CPU CPU CPU CPUCPU

IB
SSD SSD SSD

Buffer-Info
S own
R1 own
...
Rn  own
S remote
R1 remote
...
Rn remote

NIC NIC

Buffer-Info
S own
R1 own
...
Rn  own
S remote
R1 remote
...
Rn remote

Figure 3: Multi buffered RDMA based communication.

downtime, we follow the well-known double or multi buffer
approach, with concrete details being given in the following
Section 3.

3. IMPLEMENTATION DETAILS
In this section, we will elaborate on how we facilitate the

actual multi buffering with RDMA. First, we will explain
the communication architecture. After that, we will give an
outlook of the integration possibilities with existing systems
or prototypes.

3.1 Multi Buffer
The multi buffer approach, as the name indicates, includes

more than one RDMA buffer for each unit. Figure 3 depicts
a schematic overview of the components of our multi buffer
RDMA communication tier. In contrary to the mentioned
naive approach of a single buffer on each unit, the multi
buffer approach holds three types of buffers on each site. It
is important to mention that every connected pair of SU and
CU has their own buffers. That is, the amount of allocated
buffers can vary between SU and CU.

On each unit there is exactly one Send-Buffer (SB). The
name indicates that the task of this buffer is to send data
to the remote machine. Its size can vary from unit to unit.
Its working principle is, that the data which has to be sent,
is copied into the SB. Everything that is inside the SB can
be sent to the connected unit to which connection this SB is
registered. As the name multi buffer indicates, we additio-
nally allocate several Receive Buffers (RB). In Figure 3 this
is shown, as the SU has 2 RB and the CU has 4 RB. Epony-
mously, the RB is the memory region where the remote SB
writes its data. When the transmission from the SB to any
RB is complete, the data inside the RB can be consumed
by the receiver. If the data is larger than 1 remote RB, it is
sent as multiple packages iteratively.

The third type of buffer is different from SB and RB.
While the former two are responsible for the actual data
transmission, the Buffer-Info (BI) is responsible for control-
ling the interaction of the SB and RB. It is a fixed-sized
array with one entry for every buffer on the local and the
remote size. This buffer is also registered as an RDMA-
accessible memory region, which is readable and writable
by the connected units. For now, we limit ourselves to a BI
size of 16, which means we can allocate up to seven RB on
every side plus the mandatory SB. However, this could lead
to unused entries, if there are less than seven RB on one side.
The BI is used to store information about the current status
of every registered RDMA buffer of its connection, e.g. if an
RB is currently free to use. The size of an RB is arbitrary,
as long as there is enough main memory. However, every RB

at a machine is of the same size. This size can vary between
the machines. Similar to the RB, the size of the SB can be
freely chosen. Nonetheless, we propose and use an integral
multiple of the remote RB size. That is, for 4 RBs with, e.g.
1 KiB on the CU side we would allocate a SB of 4 KiB on
the SU side. Figure 3 illustrates the usage of different buffer
sizes per unit. We chose a larger SB size for the SU than the
CU, because we see a higher transfer directed from the SU
towards the CU than vice versa.

The transmission process starts with checking whether the
own SB is ready, by looking at the corresponding BI entry.
If it is ready, it is possible to send and the entry in the own
BI is changed to indicate, that this SB is currently unavaila-
ble for other data sending requests. Data transfer is then
performed as message passing. A message consists of the
operation code, some meta data and the actual payload. For
now, the meta data contains the size of the current payload
as well as the total size that will be transferred. Therefo-
re, this meta information is calculated and inserted into the
SB together with its corresponding piece of data. The SB
will contain as many messages as it can fit, based on its size
and the amount of remotely available RB. After preparing
the message, we scan the local BI for any available RB on
the remote side. Upon finding an entry, its status will be
set to unavailable and the actual data transfer, i.e. through
using the IBV WR RDMA WRITE instruction, begins. Af-
terwards, the local and remote BI entry for the RB is set
to a status that indicates that the transfer is done. Due to
the multi buffer approach it is not necessary to wait until
the chosen RB is ready again. The next data package can
be sent to the next free remote RB, which can be identified
through the local BI.

When awaiting an incoming data transfer, the respecti-
ve unit polls its local BI to check for any RB, that has the
corresponding status set to data ready and proceeds to con-
sume that message. One possibility would be to copy the
data from the RB to a memory region that is not allocated
for RDMA purposes. After the data is consumed, the local
and remote BI entry for this RB is set to ready again.

3.2 Integration
To make this communication tier as easily usable as possi-

ble it is planned to release it as a self contained C++ library
with a well defined API. This API is designed to take away
the low-level networking, buffer creation and management
topics from the user by abstract methods in a send/receive
manner. However, it is still possible for the user to configure
for example the number and size of the RB. This offers the
flexibility of adapting the communication tier to the own
workloads, but also the transparency of not having to deal
with the pure RDMA handling for example.

This library approach aims at creating a simple way of
using this RDMA based communication tier in a variety of
applications. It is desired that it is as easy as possible to
exchange the existing network communication tier of a da-
tabase system with our RDMA based one as long as there
is an existing IB connection between the systems.

4. EVALUATION
To show the overall applicability of our approach, we con-

ducted several experiments for both the single buffer and the
multi buffer approach. For our experiments, we connected
two machines equipped with an Intel Xeon Gold 6130 (Ser-



32 B 512 B 8.0 KiB 128.0 KiB 2.0 MiB 32.0 MiB 512.0 MiB 8.0 GiB
Data Size

0

1000

2000

3000

4000

5000

Ba
nd

wi
dt

h 
[M

iB
/s

]

RDMA Buffer size (symmetrical)
1.0 KiB
2.0 KiB
4.0 KiB
8.0 KiB

16.0 KiB
32.0 KiB
64.0 KiB
128.0 KiB

256.0 KiB
512.0 KiB
1.0 MiB
2.0 MiB

4.0 MiB
8.0 MiB
16.0 MiB
32.0 MiB

64.0 MiB
128.0 MiB
256.0 MiB

512.0 MiB
1.0 GiB
2.0 GiB

(a) Throughput test for the single buffer approach.

32 B 512 B 8.0 KiB 128.0 KiB 2.0 MiB 32.0 MiB 512.0 MiB 8.0 GiB
Data Size

0

500

1000

1500

2000

2500

3000

Ba
nd

wi
dt

h 
[M

iB
/s

]

RDMA Buffer size (symmetrical)
1.0 KiB
2.0 KiB
4.0 KiB
8.0 KiB

16.0 KiB
32.0 KiB
64.0 KiB
128.0 KiB

256.0 KiB
512.0 KiB
1.0 MiB
2.0 MiB

4.0 MiB
8.0 MiB
16.0 MiB
32.0 MiB

64.0 MiB
128.0 MiB
256.0 MiB

512.0 MiB
1.0 GiB
2.0 GiB

(b) Consume test for the single buffer approach.

Figure 4: Evaluation of the single buffer approach.

ver1 ) and Intel Xeon Gold 5130 (Server2 ) with 3.7 GHz and
3.2 GHz peak frequency, respectively. Both servers are equip-
ped with 384 GB of main memory. The infiniband connecti-
on is realized through two Mellanox ConnectX-4 cards with
up to 100 GBit/s. Both servers run with Ubuntu 20.04 and
employ opensm version 5.8 as subnetmanager. We repeated
every experiment 10 times and averaged the results. Note
that we calculate the reported effective bandwidth based on
the wall clock time. That is, we do not account for addi-
tional copy operations that effectively increase the overall
data that has to be processed but divide the original re-
quested data by the overall time spent for processing. Thus,
our reported bandwidth could never reach the theoretical
maximum of 100 GBit/s provided by our infiniband cards.

4.1 Throughput Test
The throughput test aims on measuring the raw writing

performance of our implementation in combination with the
available hardware. This provides a theoretical peak perfor-
mance. For this experiment the data is written from DRAM
to the SB and then to an available remote RB without wai-
ting on the consumption or acknowledgement of the CU.

Figure 4a shows the results for the single buffer approach
as defined in Figure 2. The x-axis shows the requested da-
ta size in bytes, the y-axis denotes the effective bandwidth.
Every line corresponds to a total buffer size, however since
the buffer is split into a send and receive region, each of them
only features half of the reported size. A general take-away
is that very small buffer sizes of less than 64 KiB perform
poorly, due to a high number of memcpy operations for larger
data sizes. For this experiment, we achieve a peak bandwidth
of 5615.4 MiB/s using a buffer size of 2 MiB. As the reques-
ted data is copied from DRAM to the RDMA buffer, and
then sent to the remote side, we actually process twice the
size of the original data. Thus, if we multiply the achieved
bandwidth with this factor 2, we get an approximated RD-
MA bandwidth of 11 230.8 MiB/s, which is relatively close
to the specification of the network cards.

Figure 5a shows the results for our multi buffer imple-
mentation. As shown earlier, plenty of the observed buffer
sizes perform poorly. This issue is further enhanced by the
necessity of finding a good SB-to-RB-ratio in terms of num-
ber and size. Thus, to find the best possible configuration
we iterated over 1 through 7 RBs and varied the size of the
remote RB. The size of the SB is calculated by the number

of remote RB multiplied with the size of the remote RB. As
buffer size for every remote RB all powers of two, ranging
from 210 to 229, i.e. 1 KiB up to 512 MiB, were tested. In this
experiment, we vary the data size from 8 Byte up to 4 GiB
for every combination of RB count and size.

To reduce the visual noise, we show the best 3 curves
according to the integral under the curve in Figure 5a. We
have chosen the integral over the overall highest peak, since
it better represents the more robust configurations, and it
is less prone to a single high performing outlier. The figure
shows the results for the throughput test with 1 SB and 1
RB. On the x-axis the total size of the data is shown, while
the y-axis indicates the speed of the transmission in MiB/s.

This experiment has shown that the maximum achieva-
ble transmission speed with our configuration is at around
5250 MiB/s for all three depicted curves. In this case, this
configuration is also the one with the highest peak. Most
of the other RB sizes lead to a curve with a significantly
lower peak performance. It is recognizable that the curves ri-
se quickly up to 128 KiB of total requested data size and the
optimum is reached by all shown RB sizes at a total reques-
ted data size of 512 KiB. With total package sizes greater
than the optimal 512 KiB the performance decreases. This
is due to two major facts. Firstly, only the size of the actual-
ly requested data is taken into account when calculating the
performance, but for every message that is sent, there are
several bytes of meta data added. Therefore, if the total data
size is greater than the RB size, it is split into several smal-
ler messages, each with its own block of meta data. Hence
the more packages are sent, the more untracked meta data
is transmitted, too. The second reason is, that with growing
size of a single message, the overhead of the RDMA layer,
e.g. its latency, gains impact. It is worth noting, that an RB
size in between these three best ones was not significantly
worse in performance. Significant differences were seen for
RB sizes smaller than 128 KiB or larger than 8 MiB.

4.1.1 Multi-threaded throughput test
In this experiment, we want to check if we can fully satu-

rate the theoretical bandwidth and thus we employ multiple
threads for sending data to the requesting unit. To achieve
this, we spawn an individual thread for every existing remo-
te RB. Hence the SB size is again the number of remote RB
times the size of the remote RB. This allows every sending
thread to fully use its own part of the (logically partitio-
ned) SB to write without interfering with the other sending



32 B 512 B 8.0 KiB 128.0 KiB 2.0 MiB 32.0 MiB 512.0 MiB 8.0 GiB
Data Size

0

1000

2000

3000

4000

5000
Ba

nd
wi

dt
h 

[M
iB

/s
]

RDMA Receive Buffer size
256 KiB 2 MiB 8 MiB

(a) Throughput test with 1 RB and three best performing RB
sizes according to the area under the curve.

32 B 512 B 8.0 KiB 128.0 KiB 2.0 MiB 32.0 MiB 512.0 MiB 8.0 GiB
Data Size

0

1000

2000

3000

4000

5000

6000

7000

Ba
nd

wi
dt

h 
[M

iB
/s

]

RDMA Receive Buffer size
512 KiB 1 MiB 2 MiB

(b) Multi threaded throughput test with 3 RB and three best
performing RB sizes according to the area under the curve.

Figure 5: Evaluation of the experiments on the performance of our RDMA communication tier.

threads. Again, the receiving unit does not acknowledge or
consume the received data in any way. All threads work on
the same requested data, but each thread is responsible for
its own part, if the total requested data size has to be split to
fit the remote RB. Again, we iterated over the size and the
number of RB and thus also the number of sending threads.

Figure 5b shows the results for the best performing buffer
sizes using 3 RB. The results are that the optimum of around
7100 MiB/s is significantly higher than the optimum of the
single threaded experiment. However, this experiment also
revealed, that this advantage is only given at large message
sizes of at least 64 MiB. Otherwise, the transmission speed
is worse than the single threaded case. For a total data size
of 512 KiB, which was optimal for the single threaded ca-
se, the multi threaded version with 3 RB achieved around
3000 MiB/s and therefore significantly less. We argue that
the general threading overhead impedes the performance for
such small messages. Further increasing the amount of RB
and sending threads accordingly, we can observe a flatter
curve with less dents. However, all of them approximately
achieve the 7100 MiB/s bandwidth.

4.2 Consuming Test
We designed the consuming test to better reflect actual

database workloads. In this experiment, every RB has to be
cleared by its owner, before the sender can write to it again.
Implementation-wise, the difference is that the SU signals
the CU via the BI that an RB is ready to be consumed after
writing to it. For this test consuming means, that the data is
copied to a location in the main memory of the CU, which is
not registered as RDMA buffer. However, it is also possible
to use the data from the RB directly without copying it to
any other location. Subsequently the RB is memset with 0
and signaled as ready to the SU to be used again. This does
also imply, that this RB is blocked for further writes until
the CU resets the BI status to ready again.

The single buffer experiment is shown in Figure 4b. Re-
markably, there is a huge performance drop for every curve
just as the total requested data size equals half the RDMA
buffer size. At this point, we have to send at least two mes-
sages to transfer all the data, because of the required meta
data, that is added to every message. Thus, the sender has
to wait for the receiver to make the receive region of the
single buffer available again, before sending the next mes-

sage. This is where the multi buffer approach can yield its
benefits, since it can already use the next free buffer.

Figure 6a depicts the three best curves for the multi buffer
version of this experiment using 2 RB. Other than for the
throughput test, the curves differ more from each other and
the RB sizes smaller than 256 KiB or larger than 1 MiB per-
form significantly worse. The optimum is around 5100 MiB/s
and therefore slightly lower than in the throughput test and
it is reached at a total data size of 1 MiB instead of 512 KiB.
For 3 or 4 RB the results are slightly, but not significantly
better. For 5 up to 7 RB there is virtually no difference to 4
RB. This result is achieved and only slightly different from
the throughput results because the consumption method of
our implementation is at least as fast as writing to an RB.
This means every time the sender is done with writing, ano-
ther RB may have just become ready again and there is near
to no idle time for the sender.

4.2.1 Multi-Thread
Again, we executed this experiment with multiple threads

and report selected results in Figure 6b. However, the im-
plementation of this multi-threaded test is different than the
multi-threaded throughput test. For this test every thread is
sending to at least 2 remote RB and every receiving thread
works on at least 2 RB. This is because the checking whether
an RB is ready is done by polling on the corresponding BI
entry. To achieve the maximally possible performance, this
is implemented as busy waiting using a lock on the entry
to avoid read-write-conflicts. However, busy waiting on only
one entry means that this entry is never lockable by the sen-
der, due to the larger read latency of the remote unit. Thus,
the remote side is not able to write this entry and indicate
that the data transfer is done. According to this, there are
at least 2 RB for each thread to force the unlocking of the BI
entry. The same issue occurs on the sender side where the
receiving unit would not be able to indicate that this RB
is ready to receive data again. This means for the sending
side that the SB size does not have to be numRB ∗ sizeRB as
before, but instead numthreads ∗ sizeRB .

Figure 6b depicts the best performing configuration. We
use 6 RB on the remote side. This implies 3 sending threads
on the local side and 3 receiving threads on the remote
side. The best achieved result is a bandwidth of around
5900 MiB/s. This is approximately 14 % more than the
5100 MiB/s of the single threaded consuming test, but signi-



32 B 512 B 8.0 KiB 128.0 KiB 2.0 MiB 32.0 MiB 512.0 MiB 8.0 GiB
Data Size

0

1000

2000

3000

4000

5000
Ba

nd
wi

dt
h 

[M
iB

/s
]

RDMA Receive Buffer size
256 KiB 512 KiB 1 MiB

(a) Multi buffer Consume test, single threaded, 2 RB.

32 B 512 B 8.0 KiB 128.0 KiB 2.0 MiB 32.0 MiB 512.0 MiB 8.0 GiB
Data Size

0

1000

2000

3000

4000

5000

6000

Ba
nd

wi
dt

h 
[M

iB
/s

]

RDMA Receive Buffer size
1 MiB 2 MiB 4 MiB

(b) Multi buffer Consume test, multi threaded, 6 RB.

Figure 6: Evaluation of the experiments on the performance of our RDMA communication tier.

ficantly less than the maximum of around 7100 MiB/s from
the multi threaded throughput test. Similar to the multi
threaded throughput test, the curve grows slower and rea-
ches its maximum at a larger data size. We argue that the
management overhead for the multi threading on sender as
well as on receiver side impacts the result and prevents us
from achieving the theoretical maximum.

5. RELATED WORK
Protobuf [2] is a language-neutral and platform-neutral

way of serializing structured data. However, its portabili-
ty comes with high abstraction and thus also overhead for
simple operations. We copy data columns with some me-
ta information and thus a more hand-tailored approach is
necessary to preserve performance.

In [4] the authors show an approach similar to our own
work. While they did not focus on a certain use case and eva-
luated their approach on smaller message sizes, we built our
tests with the database use case in mind and therefore, with
larger possible message sizes, buffer sizes and combinations
of send and receive buffers.

While we worked with the standard RDMA implementa-
tion in our experiments, D-RDMA [6] has recently offered a
way to achieve higher throughput and less CPU usage with
an RMDA extension. However, our use case foresees the usa-
ge of RDMA as transport layer from a data source to a data
sink. Thus, we do not face message fragmentation as e.g.
expectable for distributed joins and the like.

Our approach shares several similarities with L5 [1]. How-
ever, our system model follows a client-server design, and
we rely on RDMA to exchange contiguous data, such as
data columns and intermediates. Thus, no online switching
between communications is necessary, which could harm the
overall performance.

6. SUMMARY
We have introduced our vision on how disaggregated sys-

tem components can be composed to be usable for a data-
base system. In this paper, we presented our RDMA based
communication layer for such disaggregated database sys-
tems. We have shown the viability of our implementation
and that we are able to efficiently use the RDMA inter-
connect. Further, our evaluation identified potential pitfalls,
such as idle times, if only a single communication buffer is
used. Our multi buffer concept is able to alleviate the per-

formance drops, which arise when sending more than one
package through a single buffer.

From here on, we want to pursue multiple paths. First, we
will develop our communication layer into a shared library
and make the code publicly available, e.g. on github. Follo-
wing that, our vision is to have a deeper look into leveraging
the DRAM of the CU. That is to efficiently cache already
requested data and make it available to other local workers,
e.g. other CPUs that are executing queries on the same CU,
to save on the limited RDMA bandwidth.

7. REFERENCES
[1] P. Fent, A. van Renen, A. Kipf, V. Leis, T. Neumann,

and A. Kemper. Low-latency communication for fast
DBMS using RDMA and shared memory. In 36th IEEE
International Conference on Data Engineering, ICDE
2020, Dallas, TX, USA, April 20-24, 2020. IEEE.

[2] Google, Inc. Protocol buffers.
https://developers.google.com/protocol-buffers/.

[3] B. Grot, D. Hardy, P. Lotfi-Kamran, B. Falsafi,
C. Nicopoulos, and Y. Sazeides. Optimizing data-center
TCO with scale-out processors. IEEE Micro, 32, 2012.

[4] P. MacArthur and R. D. Russell. A Performance Study
to Guide RDMA Programming Decisions. In 2012
IEEE 14th International Conference on High
Performance Computing and Communication 2012
IEEE 9th International Conference on Embedded
Software and Systems, 2012.

[5] M. Mahloo, J. M. Soares, and A. Roozbeh.
Techno-economic framework for cloud infrastructure: a
cost study of resource disaggregation. In M. Ganzha,
L. A. Maciaszek, and M. Paprzycki, editors,
Proceedings of the 2017 Federated Conference on
Computer Science and Information Systems, FedCSIS
2017, Prague, Czech Republic, September 3-6, 2017,
volume 11 of Annals of Computer Science and
Information Systems, pages 733–742, 2017.

[6] A. Ryser, A. Lerner, A. Forencich, and
P. Cudré-Mauroux. D-RDMA: Bringing zero-copy
RDMA to database systems. In CIDR, 2022.

[7] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. LegoOS: A
disseminated, distributed OS for hardware resource
disaggregation. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
18), pages 69–87, Carlsbad, CA, Oct. 2018.

https://developers.google.com/protocol-buffers/

	Introduction
	System Architecture
	RDMA Basics
	Buffer management

	Implementation Details
	Multi Buffer
	Integration

	Evaluation
	Throughput Test
	Multi-threaded throughput test

	Consuming Test
	Multi-Thread


	Related Work
	Summary
	References

