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Abstract. With the ongoing expansion of renewable energy supply, de-
veloping and comparing precise forecasting methods becomes important.
In this paper, an evaluation metric is investigated which allows the in-
tegration of multiple accuracy criteria into one consistent performance
ranking and returns information about the economic impact of a fore-
cast. The practical applicability of the approach is demonstrated using
solar energy time series observed in different real-world scenarios.

Keywords: Renewable energy forecasting, performance evaluation, ran-
king score, business context

1 Introduction

The capacity of renewable energy sources like solar panels and wind mills is
constantly increasing world-wide. Simultaneously, many countries aim at esta-
blishing liberalized electricity markets in order to create competition between
the former monopolistic organizations. As a consequence, the maintenance of
the electric balance between power demand and supply is challenged (1) techni-
cally by the fluctuating character of the renewable sources and (2) economically
by the need for a seamless integration of all market participants. Accordingly,
a lot of research was dedicated in the past to the development of precise time-
series forecasting models for renewable energy supply. However, due to the lack
of a industry-wide accepted and standardized evaluation protocol for forecast
quality, decisions are primarily based on context-unaware statistical error me-
asures. As such domain-neutral evaluation criteria do not consider the varying
economic impact of over- and underestimations at a certain moment, this can
result in misleading decisions. Furthermore, by the use of more than one error
criterion the obtained ranking for the competing methods can be inconsistent.

The purpose of this work is the introduction of a value-based performance
evaluation methodology for renewable energy forecasting methods. Firstly, a
time-dependent context component is introduced by the use of electricity spot
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market prices to determine the economic benefit obtained from the forecast re-
sults in a modeled market environment. Secondly, we propose different forms of
an evaluation criterion which combines multiple uni-dimensional accuracy mea-
sures in order to solve possible ranking inconsistencies. Finally, by bringing them
together we create an integrated context-aware and multi-dimensional approach
with the abilities of reflecting the impact of a decision and flexible adaptation to
the underlying scenario. The paper contains 5 sections, with the first being this
introduction. In Section 2 we discuss state-of-the-art forecasting performance
measures used in the energy domain. Subsequently, we provide a basic descrip-
tion of the relevant business environment defined by the core electricity market
rules in Section 3 before we introduce our novel approach of context-dependent
forecast benefit determination in Section 4. After that, in Section 5 the practical
applicability is demonstrated on three real-world use cases and finally, we con-
clude and outline future research on this topic in Section 6.

2 Accuracy evaluation in energy forecasting

Despite of a wider range of available forecast evaluation criteria like a model’s
robustness or technical performance, reducing quality determination to the accu-
racy dimension of a forecast is a common practice in the forecasting community.
However, also the selection of appropriate statistical metrics to measure the fo-
recast accuracy is a topic frequently addressed in literature (compare e.g. [2],
[3] or [4]). For the renewable energy domain, the foundations of a standardized
performance evaluation protocol were defined by Madsen et al. [6] more than a
decade ago. As a minimum set of measures, they propose the use of normali-
zed Mean Bias Error (MBE), Mean Absolute Error (MAE), Root Mean Square
Error (RMSE) and the usage of improvement factors for accuracy comparison
between concurring methods and against näıve predictors.

Error Term Definition

Mean Absolute Error MAE = 1
n

∑n

t=1
|yt − y′t|
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n

∑n

t=1
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2
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Table 1. Common statistical error criteria used for measuring forecast accuracy.

When deciding on a specific error criterion, its characteristics have to be ta-
ken into account: The simple MAE indicates the magnitude of the average error,
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but focuses on the mean which leads to an underrating of high, but infrequent
errors. This is corrected by the Mean Square Error (MSE), as squaring the error
before the mean is calculated puts a higher penalty on large errors. The same
information is provided by the RMSE with the exception that the square root
brings the result’s unit back to the original value. In contrast, the MBE describes
the direction of the error bias. It’s value is related to the magnitude of the va-
lue under investigation. According to the definition in Table 1, a negative MBE
occurs when predictions are higher than observations, indicating a systematic
over-prediction by the model. As none of these criteria provide information on
the relative size of the error, forecasts of different time series can not be directly
compared. This is addressed by the Mean Absolute Percentage Error (MAPE),
which is one of the most popular measures and returns the MAE in percentage
terms. However, one of the known shortcomings of MAPE is that it is biased as
it will systematically select a method whose forecasts are too low. The reason is
that for under-predictions the MAPE cannot exceed 100%, but there is no upper
limit for over-predictions. Furthermore, it is not defined for observed zero values.
To deal with such limitations the Symmetrical Mean Absolute Percentage Error
(SMAPE) was proposed [7]. The SMAPE has a lower and an upper bound and
can handle zero observations as long as predictions are not zero. Surprisingly,
our former research has shown that the SMAPE is rarely found in renewable
energy forecasting literature [10].

3 Energy market models

In this section we give a brief introduction to common energy market rules and
describe the possible interactions for trading and balancing. We provide details
for the three exemplary markets whose most relevant market characteristics are
compared in Table 2.

Since the beginning of the process in the 1980s [9], many of the industriali-
zed countries have liberalized their energy markets, thus breaking up with the
traditional market roles. Customers can now freely choose their favorite energy
supplier and electricity is traded between the market participants in the newly
created markets. Similar to other commodities, transactions with a short delivery
time are done at the short term spot market and trades that have to be fulfilled
further in the future in the long term future market. While a spot market trade
is meant to satisfy an urgent need, the motivation of future contracts often is
to protect a trading party against the economic risks of unexpected and drastic
price movements. In the short-term electricity markets, the purchased power is
paid either for one trading day before it is delivered (day-ahead) or, depending
on country-specific market rules, for up to x minutes before the delivery at a
certain hour (intraday). Prices are fixed through auctions or through continuous
trading, although literature [1] suggests that they do not vary that much bet-
ween day-ahead and intraday contracts.
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Once intraday trading is closed, any further deviation in the portfolio is ba-
lanced by trading in the regulating power market. The regulating power market
is activated shortly before the time of the actual delivery and when the market
is anticipated to have any imbalance in supply or demand. The regulating power
could be activated for any duration of time. Regulating power can be either up
or down as a consequence of the following situations: If the supply is less than
the demand, the supplier’s associated balancing responsible party (BRP) has to
buy up-regulating power - at up-regulating power price - in order to maintain
the energy balance in the market. The required amount of up-regulating power
is fulfilled by other energy suppliers or by decreasing the demand by an amount
equivalent to the difference. On the other hand, if the supply is greater than
the demand, the BRP has to sell down-regulating power - at down-regulating
power price - to maintain the energy balance in the market. The down-regulating
power is sold in the reserve energy market, or the demand is increased by an
amount equivalent to the difference. Furthermore, negative wholesale prices can
be permitted or penalties can be applied to those who cause such deviations.

Australia Denmark Germany

Intraday
trading

No Continuous, closure
60min before t0

Continuous, closure
5min before t0

Pricing
restrictions

−1, 000 ≤ PSPOT ≤
330 AU$/MWh

−500 ≤ PSPOT ≤
3, 000 AC/MWh

−500 ≤ PSPOT ≤
3, 000 AC/MWh

Deviation
penalties

Cost of regulation
power

Cost of regulation
power

None for PFIT ; Cost
of regulation power for
PT option

Regulation
prices

PR UP = PR DW PR UP 6= PR DW PR UP = PR DW

Table 2. Comparison of selected characteristics for the electricity spot markets of
Australia, Denmark and Germany.

(Western) Australia. The Wholesale Electricity Market (WEM) for the South
West Interconnected System of Western Australia operates independently from
the Australian National Energy Market. Most of the energy trading in the WEM
is done directly via bilateral contracts, so in the day-ahead spot market (STEM)
only the positions not already covered by such contracts are traded. Positions
can be traded until 9:50 AM of each trading day and prices are settled through
auctions. After the STEM trades are settled, all deviations from contract po-
sitions are exposed to the regulation price. The regulation price is determined
according to the minimum and maximum STEM prices for the trading period.
Balancing costs are funded by the customers based on their monthly demand [8].

Denmark. The Danish energy market is an integral part of the Nordic energy
market, and trading takes place through Nord Pool. The spot market closes at
12 AM, where the market participants submit their bid for power that will be
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delivered or purchased on each trading interval of the following trading day. Each
trading interval represents an hourly period. Once Nord Pool calculates and in-
forms the market prices to the participants, the trade is settled. Thereafter, any
deviation in the commitment to the spot market is handled by bilateral trading
or participating in the intraday market which opens at 2 PM and closes 60 min
before delivery start. Up- and down regulation power prices are distinct and the
cost of regulation is assigned to those participants who are responsible for the
imbalance.

Germany. Trading in the German energy market takes place at the European
Power Exchange (EEX), where bids for the spot market have to be submitted
until 12 PM. Intraday trading starts at 3 PM for the following day, closing 5
min before delivery. Renewable generators can choose between fixed feed-in ta-
riffs PFIT or directly selling their energy to the market and receiving a premium
tariff PT on top of the market price. In case of the latter they are charged for
imbalances, otherwise the consumer has to pay the balancing services. In the
regulation energy market, only one price is determined for both up- and down-
regulating power.

The chosen examples show that for every market design, there are different
conditions that can affect the way forecasts are created and evaluated. This also
applies to the specific requirements in the forecasting process and to the moti-
vation of the market participants for providing accurate results.

4 Value-based forecasting performance

In this section, first we describe our approach of value-based forecasting per-
formance measurement before we define a metric used for selecting forecasting
methods based on ranking scores.

4.1 Forecast Benefit Determination

Something all the error criteria discussed in Section 2 have in common is that
none of them is context-dependent. To provide information about the domain-
specific economic impact of forecast accuracy when deciding for a specific met-
hod, a tailor-made criterion has to be used which allows for modeling the relevant
business environment as shown by [5]. In the case of renewable energy suppliers,
the economic benefit of a forecast is determined by applying the corresponding
electricity market-rules and -prices to the numerical results. This returns a sca-
lar product of two time series which is time-dependent, so whenever there are
differences between spot- and regulation-prices the over- and underestimations
will be fined differently thus leading to a higher diffusion of the original forecast
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accuracy. Subsequently we propose two criteria to measure the benefit for a fo-
recast.

Forecast Value. The Forecast Value FCV (Fn) aims at giving information
about the absolute monetary return from the day-ahead spot market for a chosen
forecasting model Fn (compare Equation 1): The predicted amount of energy y′

is always sold at the corresponding electricity spot market price PSPOT . When
the actual delivered amount of energy y is higher than anticipated, the surplus
energy is bought at 100% by the TSO at the down-regulation price PR DW .
Accordingly, for underproduction the TSO will sell the missing amount to the
energy supplier at the up-regulation price PR UP . In both cases, the expected
trading profit can be further increased when premium tariffs PT are paid on top;
or reduced by the deviation penalty DP .

FCV (Fn) =

{
y′ ∗ PSPOT + (y − y′) ∗ (PR DW + PT )−DP if y > y′

y′ ∗ PSPOT + (y′ − y) ∗ (PR UP + PT )−DP others
(1)

Energy producers participating in the spot market will be interested in max-
imizing their benefit in terms of FCV . This means that depending on their
bidding strategy, the most accurate forecast will not necessarily result in the
highest FCV . For example when PSPOT < PR DW , intentional underestimating
the scheduled output and selling the surplus energy at the regulation market is
more attractive as long as the penalty costs caused by the deviation are lower
than the net trading result. However, the FCV can be negative if that bidding
strategy fails. An exception are producers that receive fixed feed-in tariffs PFIT

and do not have to pay deviation costs, they do not rely on forecast quality
because the benefit model for their FCV simplifies to:

FCV (Fn) = y ∗ PFIT (2)

Forecast Loss. Similar to the FCV introduced above, the Forecast Loss FCL(Fn)
includes market information but determines the monetary loss for a forecasting
model compared to a perfectly fitted result. The FCL is defined as the scalar
product of the absolute energy deviation and the difference between spot- and
regulation energy prices according to Equation 3:

FCL(Fn) =

{
|(y − y′)| ∗ |(PSPOT + PT − PR UP )|+DP if y > y′

|(y − y′)| ∗ |(PSPOT + PT − PR DW )|+DP others
(3)

Hence, the optimal FCL is 0 which means that there is either no error in the
forecast or no price difference between spot- and regulation market at the mo-
ment of energy delivery. Unlike the FCV , the FCL is insensitive to the bidding
strategy of the market participant, although the significance of the time compo-
nent for forecast accuracy is reflected here as well.
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4.2 Multi-dimensional Ranking Scores

Using more than one evaluation criterion when comparing the accuracy of com-
peting forecasting methods is common practice in the energy forecasting domain
[10] and in such cases a distinct ranking can be obtained for each criterion. This
leads to several inconsistent rankings for different criteria and finally leaves the
decision about the optimal method to choose to the user. A multi-dimensional
ranking score (e.g. [11]) provides a unique ranking for multiple criteria. In this
subsection we introduce the different versions of ranking scores used in this pa-
per.

Absolute Ranking Score. Let nF be the number of evaluated forecasting
methods F and mE be the number of statistical error measures Ei(Fn) with
1 ≤ i ≤ mE calculated for each forecast output. Now, for each Ei(Fn) the
forecasting methods are ranked starting with Si(Fn) = 1 for the lowest error
value min(Ei) to Si(Fn) = nF for the highest value max(Ei). The score Si(Fn)
is the rank of Fn for its error measure Ei. The Absolute Ranking Score RS(Fn)
can then be described as the sum of Si(Fn) for all respective Ei as shown in
equation 4:

RS(Fn) =
∑mE

i=1
Si(Fn) with 1 ≤ Si(Fn) ≤ nF (4)

For example, in a setting using 5 different forecasting methods and 3 error me-
asures, the best score that can be obtained is 3 (=first position for each error
category), while the lowest score would be 15.

Normalized Ranking Score. As the RS only considers the absolute rank of
a forecast in the result list, its scale is quite coarse. The RS provides no infor-
mation about the magnitude of the distance between one position and the next,
so two methods having very close error values would have the same score as two
with a much wider spread. The Normalized Ranking Score NRS(Fn) corrects
this shortcoming. When determining Si(Fn), the error values of each category
are normalized so that min(Ei) = 0 and max(Ei) = 1. This means that for the
NRS(Fn), the optimal value is 0 (lowest value for all Ei) while the worst result is
nF . This way any discrimination is eliminated and furthermore, the probability
of having equal ranking scores for methods that simply alternate their absolute
result positions is reduced.

NRS(Fn) =
∑mE

i=1
Si(Fn) with 0 ≤ Si(Fn) ≤ 1 (5)

Weighted Ranking Scores. When choosing number and type of error mea-
sures to be used for a ranking, there might be a need to over- or underweight a
specific Em in the final score. This requirement leads to the Weighted Ranking
Score WRS(Fn) which applies the weighting factor λi with

∑
to the absolute

score Si(Fn) for each Ei as described in Equation 6. Alternatively, λi can be
applied to the normalized score as well and is denoted as Weighted Normalized
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Ranking Score WNRS(Fn).

WRS(Fn) =
∑mE

i=1
λiSi(Fn) with

∑mE

i=1
λi = 1 (6)

Using static or variable weights allows for better adaption of the evalua-
tion metric to specific characteristics of the underlying scenario, thus increasing
its’ overall flexibility. For example, continuously emphasizing the MBE criteria
would lead to better scores for forecasts that do not have a high systematic error,
although they might have strong absolute deviations in both directions during
the whole evaluation period.

The usage of weighting factors introduces the problem of how to derive the
optimal λi,t+1 for a given use case in advance. To determine λi,t we use the
current rankings for the individual error criteria Ri,t(Ei) as the input vectors and
one of the corresponding forecast benefit rankings Rt(B) with B ∈ {FCL,FCV }
as the target values for the optimization function. For example, if a method Fn

had the highest FCV in t, all λi,t are set to values so that the weighted score
ranking Rt(E) with E ∈ {WRS,WNRS} shall also return the first position for
Fn. However, this will not always be solvable by the optimizer so the quality of
the obtained results has to be verified in order to avoid misleading results for λi.
This is done by calculating the accuracy Aj obtained from the weighted ranking
according to Equation 7. The level j of A determines how many positions are
relevant for the ranking accuracy, so e.g. setting j = 5 means that only the first
5 methods of the ranking are considered while all lower positions will be ignored.

a(E,B) =

{
1 if R(E) = R(B)
0 others

and Aj =
1

j

∑j

n=1
an (7)

For static weights, setting the weighting factors once manually based upon ex-
pert knowledge might be suitable. However, as soon as the forecast environment
changes in the long term (e.g. by a higher seasonal spread of electricity prices),
regular adjustments are necessary to better reflect the new situation. Therefore,
we use diurnal persistence thus assuming that the environment of the actual
trading interval t is similar or equal to the day before so that for short terms
we anticipate λi,t = λi,t−1. This decision depends on if Aj,t−1 is considered as
satisfying, e.g. setting a threshold of A5 ≥ 0.80 signifies that at least 4 out of
the top 5 methods in the list have to be ranked with correct positions, otherwise
λi,t−2 is used and so on.

5 Evaluation

In this section we evaluate the forecast performance criteria introduced in the
Sections 4.1 and 4.2. We describe the characteristics of the used data sets and
the methodology of our experiments before we present and discuss the obtained
results.
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5.1 Methodology

For each of the markets presented in Section 3 we use a data set containing time
series with the aggregated measured output from different local solar energy in-
stallations. In the Australian scenario, a single roof-top panel installed in Perth
is used. For Denmark, the data is taken from a ground-based commercial solar
farm close to Aalborg and for the third use case, we have an aggregated measu-
rement of all mixed-type solar panels belonging to a local distribution network
covering an area of 46km2 in central Germany. Up to 4 external influences like
e.g. global irradiation and air temperature are taken from an on-site or nearby
weather station, and the corresponding prices from the day-ahead spot- and the
regulation-market. Note that all time series are measured data, so any devia-
tions possibly caused by unreliable weather predictions are excluded from the
results. Furthermore, we extract additional numerical features like the Hour-
of-the-day, the Day-of-the-year, and the Clear-sky value from the raw data in
order to improve the expected forecast quality for those methods using them.
All time series are equidistant without missing values and have a maximum reso-
lution of 60min; at least two years of historical data are provided in all scenarios.

Symbol Method

ARIMA Auto-Regressive Integrated Moving Average.
ARIMAX ARIMA with external regressors.
ETS Exponential smoothing state space model.
GBM Generalized Boosted Regression Model.
HW Holt-Winters seasonal exponential smoothing.
KNN Regression model using weighted k-Nearest Neighbors.
MARS Multivariate Adaptive Regression Splines.
MLP Multi-Layer Perceptron. A fully connected feedforward network.
MLR Multiple Linear Regression
NAIVE CS Naive Clear-Sky. Values are taken from Clear-Sky feature (maximum model).
NAIVE DP Naive Diurnal Persistence. Values correspond to last day’s observation.
NAIVE ZE Naive Zero. All values are zero (minimum model).
NNET Neural Network with a single-hidden-layer.
RF Random Forest. Regression based on a forest of trees using random inputs.
SVR Regression model using Support Vector Machines.

Table 3. Forecasting models used for evaluation

Our objective is to measure the forecast benefit for different forecasting met-
hods and compare the outcome to the ranking scores. Therefore, our experiments
are organized as follows: For each use case, we apply a selection of 12 competing
state-of-the-art forecasting methods (compare Table 3) to predict the future elec-
tricity output from the solar energy installations. We include a näıve persistence
model NAIVE DP to provide a benchmark as well as a minimum and maximum
model (NAIVE ZE, NAIVE CS ), to mark the upper- and lower bounds for the
expected values. Initially, the first year of historical data is taken for training,
and the second year for evaluating the forecasting models. Then, the forecasts
are computed on a daily basis using a sliding window over the training data



X

according to the submission rules for the individual day-ahead spot markets.
For example, if a forecast with hourly resolution has to be submitted at 12 AM
before the next trading day, the available training history ends with the 11 AM
observation and the forecast horizon is 36 hours ahead, of which the first values
that still belong to the actual trading day will be discarded. Trading is simula-
ted as day-ahead only, intra-day corrections are not considered. The errors are
computed on the forecast output for each interval. First we use the statistical
error measures MAE, MBE, MSE, RMSE, MAPE and SMAPE (compare Table
1) as individual criteria and then a combination of all of them to determine the
ranking scores RS, NRS, WRS, and WNRS. To measure the obtained forecast
benefit, FCV and FCL are calculated with the market prices PSPOT , PR UP

and PR DW .

5.2 Result discussion

The results listed in Table 4 show the monetary advantage when permanently
choosing the optimal forecasting model. The lower bound is always marked by
the Clear-Sky model NAIVE CS, which means that constantly over-estimating
the output would lead to the lowest benefit. On the other hand, for Australia
and Germany the highest benefit is obtained when extremely under-estimating
using NAIVE ZE, so selling energy at the regulation market brings higher re-
venues than on the spot market. However, this strategy would not have worked
for the Danish market. Although here the spread between best and worst re-
sult is the highest with 175%, no näıve model is found among the first ranks
so the market rules clearly favor accurate forecast. In contrast, the top-ranked
methods in terms of FCL are GBM, RF, MARS, MLP and NNET, which all
are sophisticated forecasting methods that make use of external information. In
a fluctuating environment, they are more likely to produce forecasts of higher
accuracy than uni-variate or näıve methods.

Australia Denmark Germany
# Method Result Method Result Method Result

1 NAIVE ZE 656.27 $ GBM 51,050.61 AC NAIVE ZE 105,459.87 AC
2 ETS -5.9% MARS -2.7% GBM -4.2%
3 GBM -6.9% MLP -3.3% SVR -4.4%
4 RF -7.3% RF -3.4% RF -4.5%
5 MARS -7.5% NNET -4.3% MARS -5.3%
... ... ... ... ... ... ...
15 NAIVE CS -64.7% NAIVE CS -175.4% NAIVE CS -110.8%

1 GBM 5.00 $ GBM 1,053.29 AC RF 20,467.61 AC
2 RF +35.3% RF +2.6% GBM +0.8%
3 NNET +39.4% MARS +12.8% NNET +4.5%
4 MLP +42.4% NNET +13.5% MARS +5.5%
5 MARS +49.3% MLP +33.4% MLP +9.2%
... ... ... ... ... ...
15 NAIVE ZE +3491.4% NAIVE CS +908.5% NAIVE ZE +512.2%

Table 4. Accumulated FCV in the upper- and FCL in the lower part. The first row of
each block shows the absolute value, subsequently the percental deterioration is listed.

Figure 1 compares the outcome for the error criteria in terms of FCV on the
left, and FCL on the right side. The method selection decision is reconsidered
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in a daily interval, so when observation values are available at the end of each
trading day, the optimal method from the last period is used again to predict
the forthcoming day. It can be seen that for the FCL, the ranking scores (red)
outperform most of the standard error criteria (light blue). Furthermore, the va-
rying impact of the standard errors can be observed, e.g. basing on the SMAPE
leads to a higher (avg. +30.6%) benefit for our examples than the MAPE. Using
the WNRS with flexible weights works fine for Australia, for Denmark and Ger-
many NRS and RS would be preferable. In contrast, for the FCV using the
standard errors is more convenient than ranking scores with the exception of
Australia. Average differences between the different options are much smaller in
all scenarios than for the FCL.
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Fig. 1. Impact of selected error measure on total FCL in the left - and FCV in the right
column. Standard error measures are displayed in light blue, while the red bars display
the specific error criteria introduced in Section 4. Results are normalized and organized
in the way that the left bar in each diagram represents the best result obtained.

6 Conclusions

Our findings show that FCL and FCV are justified context-aware output measu-
res for forecast performance evaluation as both of them illustrate the economic
benefit obtained from a specific method. However, they should not be used for
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the same purpose. Basing method selection on multi-dimensional ranking scores
leads to better forecasting results in terms of a minimized FCL than for most
of the uni-dimensional criteria but the use of weights does not always outper-
form unweighted scores. Otherwise, the maximization of the FCV is preferably
obtained by using the very same FCV for markets with one regulation energy
price where over- and underestimations are equally fined. In contrast, for varying
regulation prices MAE and RMSE give better results. In fact, the definition of
an appropriate evaluation metric strongly depends on the underlying scenario’s
business context information. Our future work will address refinements of the
ranking accuracy measurement and the method selection strategy.
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