Multi-GPU Approximation Methods for Silent Data
Corruption of AN Codes

Matthias Werner” Till Kolditz Tomas Karnagel’ Dirk Habichf

Wolfgang Lehner'
* Center for Information Services and High Performance Computing
T Database Technology Group
Technische Universitit Dresden, Germany
" Matthias.Wernerl@tu-dresden.de t {firstname.lastname}@tu-dresden.de

Abstract

Multi-bit flip rates are assumed to increase dramatically with future transistor tech-
nologies, especially in computer DRAM. We previously showed that employing AN codes in
main-memory database systems is a feasible choice in terms of performance overhead and
memory consumption [1]. The silent data corruption probability of a code is determined
by its distance distribution, whose computational complexity is exponential for non-linear
codes like AN coding. We provide exact and approximation algorithms for computing the
distance distribution on GPUs for AN codes.

1 Introduction

Error detecting / correcting codes (EDC / ECC) have been widely studied in theory and applied
in practice [2-4]. Linear codes like Hamming are easy to implement, offer low coding overhead
and constant decoding time. They have well-defined, but limited detection and correction capa-
bilities due to their algebraically determined structure, where the linear code represents a vector
space over a Galois field GF(q) (¢ = 2 for Boolean space) [3, 4].

Efficient decoding algorithms have been implemented in hardware and single error correcting,
double error detecting Hamming is nowadays used in server-grade main memory (ECC DRAM).
AN-coding [5], being one representative of non-linear codes, only offers efficient error detection
capabilities. Since AN codes are non-systematic, error correction would have to be done in a
brute force manner and more efficient correction is an open problem. However, some non-linear
codes provide better reliability than any linear code with the same parameters [6]. While linear
codes are typically used in communication systems, AN codes have been used to detect errors
in hardware itself [4, 7, 8] and current research advocates to use it in main-memory database
systems for bit flip detection as well [1].

code word space B"

data word space B O valid word <«— decode

; : — encode
[Ne} @ invalid word
. L e » bit flip

{ r-bit sphere Hamming distance

Figure 1: Encoding of data words and decoding of code words.

The reliability of a (non-)linear code depends on how many bit flips can be detected or even
corrected after an error-prone transmission of a code word. With the Boolean set B = {0,1} an
injective function ¢ : B¥ — B”, n>k>1, defines the code by C' = Im(¢) C B™ [9]. A given data
word x € BF is mapped to a code word u € C, which can be decoded back to the original data
word as illustrated in Figure 1.

The r-bit sphere of a code word vector u € C' contains all vectors v € B™ with a Hamming
distance (see Definition 1) dg(u,v) < 7, [3, p. 11]. The r-bit spheres do not overlap, if the
minimum distance d between all different code words is d > 2r (for case d = 2r see [3, p. 10]).
If <r bit flips occur during a transmission, an ECC is able to correct such an invalid code word.
For instance, Hamming [10] as a linear code with d = 3 is able to detect double bit flips and
to correct single bit flips. When > r bits flipped, this results either in an uncorrectable invalid
code word or, even worse, in a code word within a bit sphere of another code word. The latter
results in a decoding error where the decoder returns a data word without being aware of the
error, which is referred to as silent data corruption (SDC).

Recent studies suggest that the single event upset (SEU) error model will become obsolete
while multi-bit flips already lead to uncorrectable data corruption [11-14]. It is assumed that
both rate and number of bits flipped will increase with future transistor technologies [11]. In
the context of the database domain, where users typically expect accurate results, we see that
SDC has severe impact on all tasks of database systems. For query processing as example, joins
may be incomplete when tuples’ join attributes are altered, or filtered scans may have missing
or even additional tuples when the filtered values contain bit flips. In short, SDC leads to false
positives and false negatives in query (intermediate) results.

In contrast to typical channel-based considerations of EDCs or ECCs, we try to understand
robustness of codes being used for storing data in a computer system’s main memory within
the scope of in-memory database systems. There, all important business data is stored in main
memory (DRAM). The problem here is that the probability of errors depends at least on the
hardware (DRAM) technology, each of the memory cells’ susceptibility to external influences!,
each cell’s degradation due to aging, as well as the time between successive writes and reads.
Furthermore, it is not yet clear whether bit flips will be independent or not (burst errors, .. .).
Like Forin [5] we argue that, currently, it is not feasible to assume a specific error model.

We earlier proposed AN codes as a software coding approach for in-memory database systems
[1], showing that it comes at little or no costs in terms of throughput. We envision AN codes
as a complementary, or even alternative, to hardware ECC with Hamming codes in the area
of database systems to better detect multi-bit flips in main memory. It can be an alternative,
because database systems inherently store all data redundantly anyways (materialized views and
indexes, recovery log, ...).

AN codes map data to code words by multiplying a factor A. To find good factors A the
probabilities of SDC have to be taken into account. The biggest problem is that, for each data
width, each A behaves differently. Here, brute force attempts were made for data widths up to 16
bits [7, 8], where basically all code words are checked against all possible error patterns. These
previous approaches are insufficient: On the one hand, in-memory database systems operate on
the larger native data widths of currently up to 64 bits. On the other hand, the computational
effort can be reduced, if only closest pairs of code words are examined. For AN codes the
complexity of brute force is (9(22k) [9]. An instance with k = 32 would take 213 days assuming
a modern multi-GPU node with 10'2 operations/s.

In this paper, we use sampling methods like Monte-Carlo or lattice points to reduce runtime
at reasonable costs of accuracy. Since this task is highly parallelizable, GPUs are used for further
acceleration. Value ranges of A and their probabilities of SDC for data widths up to 24 bits are
examined. Runtimes and computation of optimal values of A are shown for data widths up to
32 bits using approximation and exact algorithms where possible.

The remaining paper is structured the following way: In Section 2 we introduce AN codes
and our measure of SDC probability. In Section 3, we show how the distance distribution is
computed for AN codes and elaborate on the GPU implementation details. Then, the results
are discussed in Section 4 and, finally, we give a conclusion in Section 5.

2 Prerequisites

Regardless of a specific error model we provide a methodology for determining the probability of
SDC for coding schemes in general. For describing and evaluating the algorithms, the following
definitions are introduced.

llike cosmic rays, heat, voltage fluctuations, electrical crosstalk, etc.

Definition 1. The bit width of data words is assumed to be k > 2.
e Let be B ={0,1} the Boolean set. BF is the k-fold Cartesian product of B.
e For a € B wt(a) returns the number of bits with value 1 (weight of).

e dy(a,B) = wt(a®) is the Hamming distance with the bitwise XOR operator @®.

0p(z,y) defines the indicator function:

Sy, y) = L if dy(z,y) =9, 0<b<n
’ 07 if dH(l',y) # b7 - .

o The AN code is defined by a constant generator A, h=n—k=[log,(A)], and by

Ca={A-zcB":zcB"}.

A is chosen to be an odd number, since even numbers are left shifted odd numbers [7, p. 94].
The AN code Cy4 preserves the code words with respect to addition, but not for multiplication
as Axy - Azg = A%(x1 - m2) # A(z1 - 22) [4, p. 103]. AN codes are both non-linear and non-
systematic. A code word pair (u,v) with dg(u,v) = b describes an undetectable b-bit flip, since
u,v € C'y. For computing the SDC probability, the Hamming distances between all code word
pairs have to be enumerated yielding the distance distribution [9].

Definition 2. Cl‘:‘ denotes the distance distribution of code C'4 by
= |{(u,v) € CF : dy(u,v) = b}|

For a code word of length n there can be (’;) different b-bit flips, because the order of how the

bits flip is unimportant. Each cg‘ is related to the number 2% - (’g), which represents all possible

b-bit patterns over all code words in Cy. This yields the SDC probability pl‘;‘ for b-bit flips:

A %
= 1
Py ok . (n) (1)
If A =1 or no encoding takes place, then n =k, ¢; = 2* (’;) and p, = 1 are obtained.

3 Computing Distance Distribution of AN Codes

By Definition 1 the distance distribution can be written as:

=3 Y 6440, 48) (2)

a€EBF BBk

AN codes are non-linear and (Aa) & (AB) # A(a @ (). The two sums cannot simply be
reduced to a single sum unlike Hamming, where the distance distribution can be computed
directly from the weight enumerator [3, 125ff.]. The complexity of Equation 2 is O(4¥). For
parameter optimization the algorithm might run thousands of times for different values of A. To
approximate the distance distribution, only certain parts of the sum iterations are computed,
which is restricted by the desired number of iterations M. The Monte-Carlo method achieves
this by using random samples over a domain €2 to estimate the definite integral of a function f:

M
<;;ﬂ@%LNMi v [

The sample points z; shall cover {2 as the number of iterations M grows.

k ok N
A 2 2
Cp =

ZébA o1(r), A - oa(s)) ~ ¢t (3)

rlsl

Equation 3 estimates cf by using sample streams o7 and 2. The samples are generated either
by 0pseudo Of pseudo-random numbers or by oquasi of quasi-random numbers. Pseudo-random
numbers are prone to clustering, while quasi-random numbers fill the space more uniformly.
The probabilistic error of Monte-Carlo is known to be O(ﬁ) and for quasi-Monte-Carlo it is

O(%) with number of dimensions ¢ [15]. We also examine regularly aligned samples, also

called lattice or grid points, which are given by ogria(r) = Qk# It will turn out that M should
be an odd value for better convergence. If M = 2%, then the grid sampling yields the correct
result, while the random numbers still miss the solution due to collisions and gaps.

Algorithm 1 AN code distance distribution — basic algorithm

Input: £ > 2

Input: Value A >0, n=k+h, h = [logy(A4)]

Input: Initial distance distribution C? =0,6=0,...,n

Output: Distance distribution ¢ of code C4
i: fora=0,...,(2*-1) do > outer loop is parallelized on GPUs]
2 for 3=0,...,(2F -~ 1) do > inner loop is processed by each thread
3: b« dg(Aa, AB)
4: ot +1
5 end for
6: end for

7. return ¢?

Algorithm 1 shows the basic procedure for enumerating the Hamming distances of all code
word pairs. For 1D sampling, line 2 is replaced by 8 = o(r),7 = 0,..., M. For 2D sampling?,
line 1 is then replaced by o = o(s),s = 0,..., Ms. As a simplification, the exact algorithm
exploits symmetry and starts at 8 = o+ 1 in line 2 (then line 4 counts twice and ¢ = 2F).

The outer loop is mapped to equal workloads onto the GPUs. If symmetry in line 2 is used,
then the inner loop iterations would decrease linearly in each step. To distribute equal workloads
across all GPUs, the workload size of GPU 1 is computed by:

kW] — [25wi], wi=1—4/1— % 0 < i < N=number of GPUs (4)

w; is the solution of fiz—H l—xdx = % for equal work size areas. The maximal relative error of
the estimation &' is given by A = max;~ @ (b =0 is omitted due to cf = 2%).

Algorithm 1 can be parallelized on GPU, since the Hamming distances of two code words
can be computed independently. We use the CUDA C/C++ for programming Nvidia GPUs.
Listing 1 shows the CUDA C/C++ implementation of the Algorithm 1. UINT is a template type
for unsigned 32-bit or 64-bit integers. threadldx.x is the thread index in a thread block, e.g.
0 — 127. blockDim.x is the number of threads per block, e.g. 128. blocklIdx.x is the block
index. gridDim.x is the number of blocks.

As registers of GPUs are 32-bit wide, the multi-GPU implementation uses 32-bit integers as
long as the array elements in a thread do not overflow. With max; cf < maxy 2F (Z) =2k (n%)
from Equation 1 the following upper bound determines when to use to the 32-bit integers:

k(n
A < 2 (n/2) 932
bthread = 1 0ads '

2k k
It should be possible to use thr(c’“éjz as a lower border, since higher values of A make the distance

distribution more wide and flat to keep the total sum equal to 4*. If 4 GPUs are used each with
64000 threads, then the 64-bit implementation is used when k > 27. As the GPU uses 64-bit
for the global array, the highest bit width for running the GPU algorithm is & = 33.

distr is the distance distribution array, offset=[2*w;], end=[2*w; ;] from Equation 4
and Aend=A - (2F — 1). distr_local is a thread local array with DISTR_SIZE elements. Since
local array indexing is dynamic and non-uniform, it cannot be stored into the fast registers, as

2For 2D sampling only Ogrid has been implemented

Listing 1: CUDA Implementation

1 template<uint32 DISTR_SIZE, typename UINT>

2 __global__

3 void ancoding(UINT A, uint64x distr, UINT offset, UINT end, UINT Aend) {
4 /// stored in LocalMemory

5 UINT distr_local[DISTR_SIZE] = { 0 };

UINT v, w;

/// grid-striding loop of data words

8 for (UINT i = blockldx.x * blockDim.x + threadldx.x + offset;

9 i < end;

=

-

10 i += blockDim.x * gridDim.x) {

11 /// encode data word i to code word w

12 w = Axi;

13 /// loop succeeding data words

14 for (v=w+A; v<Aend; v+=A) {

15 /// hamming distance processed by local histogram
16 ++distr_local[hamming_distance(w, v)];

17 X

18}

19 /// add local histogram to global memory
20 for(uint_t c=0; c<DISTR_SIZE; ++c)

21 atomicAdd(distr+c, distr_locallc]);
22}

they are not addressable at runtime. Hence, distr_local has to be stored in local memory,
which is L1 cached thread-private global memory. The L1 cache configuration is maximized
by cudaDeviceSetCacheConfig(cudaFuncCachePreferL1), which can double the speedup on
pre-Maxwell GPUs, where shared memory and L1 cache are sharing storage.

To get scalable and flexible kernels, the outer loop strides by the size of a CUDA grid (threads
per block x blocks per grid). The kernel is called with blocks=32 - numberOfMultiprocessors
and 128 threads per block. After the local histogram is filled, atomic operations are used to add
the values to the global distance distribution.

The probabilities pf decrease with increasing h as the total sum Zlgig cf = 4% holds for all

h (cp. Equation 2) and 2umberof code words Q,Eih = 27" [7, p. 94]. We assume that few bit

number of all words
flips occur more likely than many bit flips at once. Hence, our definition of an optimal A, also

called “super” A [8], is to minimize the first positive histogram value for a given h:

AZ = argmin CbA |c‘14,...,c?71:0 . (5)
2t a<ah
A is odd
b—max
For the database domain it is important to control the storage overhead, which is why we want to
find an optimal A for each width h. The implementation® also provides 2D grid point sampling
and supports code word widths up to 64 bits.

4 Results

Table 1 provides the average runtimes for computing the distance distribution of AN codes for
a single A with value 61. In column “exact” ¢ denotes the time to solution on CPU or GPU(s).
tas is the runtime depending on the number of iterations M. Aj; is the maximal relative error
after M iteration steps.

The runtime of the (multi-)GPU implementation scales about linearly with the number of
GPUs up to k = 32. The 24 Haswell CPU cores do not use vector instructions like AVX and
are almost 4x slower than a single K80 GPU. The GPU performance is memory bound, which
is a result of the dynamic non-uniform array access of cgf in line 4 of Algorithm 1.

3https://github.com/tuddbresilience/coding_reliability

https://github.com/tuddbresilience/coding_reliability

Table 1: Computing distance distributions of AN codes for A=61

exact Ogrid,1D,1x GPU Ogrid,1D,4x GPU
k tcpu tixgPu taxGPuU ty Ay ty Ay M
8 7ms 1ms 3ms 11ms 0.0232 6ms 0.0232 101

16 376ms 130ms 41ms 26ms 0.0031 11ms 0.0031 1001
24 382min 99min 27min 1261ms 0.0053 354ms 0.0053 1001
32 - - - 19 min — Hmin - 1001

Average values after 5 runs on the Bull HPC-Cluster at TU Dresden
CPU: 2xE5-2680 v3 Haswell 12-core 2.50 GHz, gcc5.3, OpenMP 4.0
GPU: NVIDIA Tesla K80, CUDA 7.5

012 A<2° A<26 A<27
: A 16
. P2
0.08 4} |\ AL A 15
- i o
S \ ‘i 14
0.04 Ao
’%{\& /\\,{ R » L | ; 13
0 i . .AW\"’% T/\‘» mﬁA‘%ﬁf‘r’*“‘"&*“""‘m«’f‘&& \XE e ma o vt Wt % 12
X A 11
0.03 - b3 \cgzo —
<o i X 10
S 0.02 A
0.01 - A O “ 9
N N % S ey i x/\/‘
0 T T T T T T T 8
3 19 35 51 67 83 99 115

A

Figure 2: Finding optimal A’s (only odd values) by Equation 5 for k € {8,...,16}

These local arrays cannot be stored in GPU registers, because they cannot be addressed
dynamically at runtime®. The array is stored in local memory instead (thread-private global
memory), where L1 cache becomes the bottleneck. If the 64-bit GPU implementation is used,
then the runtime took about 3-4x longer than using 32-bit on a single K80 GPU.

For k = 16 and A = 61 the Nvidia profiler shows that the load/store units of the GPU
multiprocessors are utilized by almost 90 %. The L1 local memory cache hit rate reaches almost
99 %. However, there is an average of 6 local load/store transactions per request. As a conse-
quence, the load/store request of a CUDA warp (32 threads, SIMD) must be replayed 6 times
due to uncoalesced memory access, until all the requests have been served. This coincides with
a benchmark kernel using registers, which showed a 7x better performance than using local
memory.

Figure 2 shows several things: firstly, how an increasing value of A gradually decreases the
SDC probability p4' and pf?, and secondly, that p{;‘ differs for varying k. The lines are color coded
representing different k’s. Dashed (solid) lines show the probability of silent data corruption
under 2-bit (3-bit) flips (respectively). The upper graph shows all probabilities, whereas the
lower graph emphasizes pg? under the condition 0’24 = 0 (cf. Definition 2 and Equation 1). The
graph also shows how generator A creates relatively high probabilities of SDC, if A = 27—1 or
A =241 for i = {2,...,7}. Although the curves are mostly almost equal among the values of
k, irregular peaks for different A are observed.

Figure 3 shows the convergence of the three different 1D sampling methods for A = 61 and
k = 16 (left) and k = 24 (right). In almost all cases the grid points (grid) outperform the random
numbers (pseudo, quast), generated with the cuRAND library, in terms of both runtime (¢) and
relative error (A). The left graph furthermore shows that for M = 216 grid points compute the
solution with some overhead in runtime. The 1D grid approximation is directly influenced by
the value M, where odd values lead to much smaller errors.

4Workaround with if/switch-case branches would be even more costly here.

k=16, A =61 k=24, A=61
216 1
1 10000 vn
log(M)
1000 M
0.1
100 texact
tpseudo
0.01 10 »
4 E tquasi
0.001 L= ¢
grid
0.1
0.0001 A]pseudo
0.01
Aquasi
-5
10 T T T 0.001 Agrid
10 100 1000 10000 100000 10 100 1000 10000 100000
M M

Figure 3: Convergence of maximum relative error A for 1D sampling according to the number of iterations M.
Run on a single K80 GPU.

pseudo-random quasi-random 1D grid
0.4 . . 1
L]
L]
0.3 E— 1 e .]
L ° .
®h ° oo
q 02 '-,) SR AR T .:. et . L 05
v A ° }! :5. oo, @ o c e e o %, . °
- [L] [] [} L] . -
01 P «> % ... % o & o © ".'-. ° e ° . e KR %e %
0 ° ®le ®e S ‘.c °° o e o]0 ° ..‘"b'.‘a‘o”"o.."“"\s'o'ﬂ: 0
T T T T T T T T T
64 80 96 112 128 64 80 96 112 128 64 80 96 112 128
M M M

Figure 4: Influence of number of iterations M on runtime ¢ and relative error A (k = 24, A = 61). Filled (empty)

circles denote even (odd) Ms. Run on a single K80 GPU.

tins

120
0.04 |
110
0.03 1 100
<C£ <
0.02 | 90
0.01 80
70
0
0
b b
Ae{17,...,31} Ae{33,...,63} —— Ae{65,...,127} ——

Figure 5: How value A controls level of probability for kK = 8 and k = 16

Figure 4 compares the impact of value M on the maximal relative error due to the approxi-
mation in greater detail. For random numbers the error seems uniformly distributed, while grid
points indicate minimal values of relative error for odd Ms.

k=24 k=24
1 0.0001

0.1 -

0.01 -

T 0.001 | e 107 N

0.0001 -

1075

1075 T T T T T T T

107° T T T T T T T
0 5 10 15 20 25 30 35 40

0O 5 10 15 20 25 30 35 40

b

b
A=17 A=515 A=32771 A=55831 A=65519 —e—
A=31 A=1021 A=65533 A=63877 A=64311 —o—

Figure 6: How value A controls level of probability for k = 24

Figure 5 and Figure 6 compare the probability functions depending on the generator A and
data word width k. Within 2"~ < A < 2" low values of A give low probabilities on the right side
of the probability function pf. Conversely, values of A close to 2" mostly yield lower probabilities
on the left side of p;!. It looks like a seesaw being pushed down on the left. In contrast, at the
borders (i.e. very small/large b) the SDC probabilities vary largely with no obvious pattern,
which confirms previous findings [8]. The flat region follows 2=", h = [log, A] and grows with
n. Large values of A are potentially more able to keep SDC probabilities at zero on the left
side. However, Figure 6 with A = {55831,63877} and prime number 65519 demonstrates that,
even in the upper range, choosing the wrong A can lead to very high probability of SDC for low
values of bit flips b. A = 64311 is the super A found for k = 24 and h = 16.

Table 2 lists super As for different widths of A (h € {3,...,16}) and different data widths
(k € {8,16,24,32}), which adhere to our definition by Equation 5. Values k* refer to the
approximation algorithm using 1D lattice points with M = 1001 for k = 24 and M = 3 for
k = 32. First of all, it shows that different As are optimal for the same h and varying k.
Secondly, it shows the relation between the minimum Hamming distance of each code and h and
k: for increasing k we obviously need larger h to keep the same minimum Hamming distance.
It should be noted that not all super As are prime numbers and are always located close to 2".

*

Table 2: Super As and minimum Hamming distances for different data widths. *=approx., bold=prime.

h k=8 k=16 k*=24 k" =32 h k=8 k=16 k*=24 k* =32
3 712 T2 7 2] 72 10 857 [4 947[4] 981 [4] 881 [4]
4 13[2] 13[2] 13[2] 15[2] 11 1939[5] 1939 [4] 1939 [4] 2029 [4]
5 293 292 292 212 12 3813[5] 3349 [4] 3829 [4] 3565 [4]
6 59[3 61[3 61[3 55[2] 13 7463 [5] 7785 ([5] 6311 [4] 7947 [4]
7 115[3] 119[3] 111[3] 125[3] 14 13963 [6] 14781 [5] 15993 [5] 16041 [5]
8 233[4 233[3] 237[3] 225[3] 15 27247 [6] 28183 [5] 29675 [5] 28691 [5]
9 487 [4] 463 [4] 423[3] 445[3] 16 55831 [7] 63877 [6] 64311 [5] 64311 [5]

5 Conclusion

In this paper the distance distributions and therewith SDC probabilities of AN codes are com-
puted on GPUs. Since AN codes are non-systematic and non-linear, the complexity of O(4*) is
tackled with sampling methods. With an odd number of iterations M the uniform grid points
show better runtimes and convergence than pseudo- or quasi-random number sampling.

The multi-GPU implementation accelerates computation of the distance distribution: e.g. for
a single A and k=24 the 4xK80 GPUs compute the exact solution in 27 min, which is almost 16 x
faster than the 24 Haswell CPU cores. The 1D grid sampling algorithm returned the solution
with a relative error of 10~% after just 354ms, despite the very small number of grid points
of M = 1001 compared to 224 code words in the exact algorithm. These techniques allow to
approximate SDC probabilities for data widths of k£ > 24 in reasonable time. There is space left
for optimizations. A recent implementation of a shared memory solution showed a speedup of
about 1.5x on K80 and can be found on our github repository. Currently, the algorithms only
can run for data word widths up to 32 bits due to overflow issues, but it can be extended to
64 bits using a global array variable with 128 bit integer in the CUDA kernel.

Different values of A are examined up to k=32 and the corresponding super As are listed in
Table 2. For large k the probability function p” becomes continuous-like, except irregularities on
the borders, which confirms previous findings [8]. The value within the flat regions is computed
by 27" and for the corresponding distances it holds 2¥—" (Z) As a rule of thumb, larger As offer
more potential to increase the code’s minimum Hamming distance. Furthermore, not all super
As are prime numbers.

Acknowledgment

This work is partly funded by the German Research Foundation (DFG) within the Cluster of
Excellence “Center for Advancing Electronics Dresden” (Resilience Path) and by Nvidia through
the GPU Center of Excellence (GCOE) at the Center for Information Services and High Perfor-
mance Computing (ZIH), TU Dresden, where the K80 GPU cluster Taurus was used for all the
computations.

References

[1] T. Kolditz, D. Habich, D. Kuvaiskii, et al., “Needles in the haystack—tackling bit flips in
lightweight compressed data,” in Data Management Technologies and Applications, 2015.

[2] R. H. Morelos-Zaragoza, The art of error correcting coding. John Wiley & Sons, 2006.
[3] F.J. MacWilliams and N. J. A. Sloane, The theory of error correcting codes. 1977, vol. 16.
[4] P.Raab, S. Krdmer, and J. Mottok, “Reliability of data processing and fault compensation

in unreliable arithmetic processors,” Microprocessors and Microsystems, vol. 40, pp. 102—
112, 2016, 1SsN: 0141-9331. DOI: http://dx.doi.org/10.1016/j .micpro.2015.07.
014. [Online]. Available: http: //www . sciencedirect . com/science/article/pii/
S0141933115001131.

[5] P. Forin, “Vital coded microprocessor: Principles and application for various transit sys-
tems,” Proc. IFACGCCT, 2014.

https://doi.org/http://dx.doi.org/10.1016/j.micpro.2015.07.014
https://doi.org/http://dx.doi.org/10.1016/j.micpro.2015.07.014
http://www.sciencedirect.com/science/article/pii/S0141933115001131
http://www.sciencedirect.com/science/article/pii/S0141933115001131

F. P. Preparata, “A class of optimum nonlinear double-error-correcting codes,” Information
and Control, vol. 13, no. 4, pp. 378-400, 1968.

U. Schiffel, “Hardware error detection using AN codes,” PhD thesis, TU Dresden, 2011.

M. Hoffmann, P. Ulbrich, C. Dietrich, et al., “A Practitioner’s Guide to Software-based
Soft-Error Mitigation Using AN Codes,” in HASE, 2014.

E. Guerrini, E. Orsini, and M. Sala, “Computing the distance distribution of systematic
non-linear codes,” Journal of Algebra and Its Applications, vol. 09, no. 02, pp. 241-256,
2010.

R. W. Hamming, “Error detecting and error correcting codes,” Bell System technical jour-
nal, vol. 29, no. 2, 1950.

D. Fiala, F. Mueller, C. Engelmann, et al., “Detection and correction of silent data cor-
ruption for large-scale high-performance computing,” in SC12.

L. Borucki, G. Schindlbeck, and C. Slayman, “Comparison of accelerated dram soft error
rates measured at component and system level,” in IRPS, 2008.

A. A. Hwang, I. A. Stefanovici, and B. Schroeder, “Cosmic Rays Don’t Strike Twice:
Understanding the Nature of DRAM Errors and the Implications for System Design,”
SIGARCH Comput. Archit. News, vol. 40, no. 1, 2012.

B. Schroeder and G. A. Gibson, “A Large-scale Study of Failures in High performance-
computing Systems,” Dependable and Secure Computing, vol. 7, no. 4, 2010.

C. Lemieux, “Monte Carlo and Quasi-Monte Carlo Sampling,” in, Springer, Ed. 2009, 1SBN:
978-1441926760.

