
Julian Eberius*, Maik Thiele, Katrin Braunschweig and Wolfgang Lehner

Technische Universität Dresden, Germany

2

Motivation

 …information retrieval and

 database systems…

 type of data that is managed (structured versus unstructured)

 query language used (fully specified query versus keyword query)

 nature of the query result (exact single answer versus ranked list of possible answers)

 usage scenarios (analytic scenarios versus information gathering)

 …of merging the two paradigms for use in ad-hoc and self-service analytics

3

DrillBeyond

 Blurring the lines between type of data managed, query language used, and nature of the query result

 …relational queries on a database and…

 …top-k keyword-based searches (= Enity Augmentation Queries) Web Tables

4

DrillBeyond – System Architecture

 Index of Web tables

 Generic system exposing an interface for
keyword-based document search

 Maps SQL query tokens to the database
catalog

 For unrecognized tokens (e.g. “gdp“) we
introduce transient metadata

 Query is rewritten to include an additional
join with a transient relation

 Implements the entity augmentation
processing

ta
lk

ye
st

e
rd

a
y

5

DrillBeyond – System Architecture (2)

 Implements the repeated execution of
operator trees using the DrillBeyond
operator 𝜔

 Minimize the overhead of creating
multiple result variants

6

System Integration Challenges

 Top-k query result versions for a single user query

 Naïve way: process the query k times  query runtime
increased by factor k

 Goals:

- between query executions

- Maximize invariant parts of multiple executions

 Web tables are not fully known at plan-time

 no selectivity information or data types at plan-time

 Goal: with relations only known

n_name gdp total

US 313.2 43.8

Germany 81.4 29.1

France 65.3 27.5

n_name gdp total

US 313.2 43.8

Germany 81.4 29.1

France 65.3 27.5

n_name gdp total

US 313.2 43.8

Germany 81.4 29.1

France 65.3 27.5

7

DrillBeyond Operator 𝜔

 Inititializes state

 Produces augmented tupels in three phase

- Collect()

- Augment()

- Project()

8

DrillBeyond Operator 𝜔 (2)

 Pulls and stores all tuples

 Blocking

 Pass all entries from the EAS
into a hashtable

9

DrillBeyond Operator 𝜔 (3)

 Produces output tuples by replaying the
stored tuples and filling the augmentation
attribute

 Called when subtrees have to be re-
executed

 Produces the multi-variant query results

10

Why Blocking?

 Send each tuple to the augmentation system at is own (tuple-
at-a-time)

 Augmentation system may choose ds1, ds2 and ds4

 …needs to be a operator

 Realized in the “collecting” state in function Next()

 Consumes tuples from underlying operators until these are
exhausted

 Hands them over to the augmentation system

country gdp

Russia ?

UK ?

USA ?

country gdp m USD

USA X

Canada Y

country gdp EUR

Russia X

France Y

country gdp Mil. $

UK X

Russia Z

country gdp EUR

UK X

ds1 American Countries ds3 World GDPs

ds2 European Economy ds4 European Economy

11

Lower Placement Bound



 𝜔 can only be placed when all filters on R, e.g., joins and predicates, have been applied

 In other words: apply 𝜔 to the minimum number of entities in R

12

Invariant Caching

 Modeled after TPCH query 2

𝜔

materialization node

13

Maximize Invariant Sub-Trees

 …with respect to a single query execution  …with respect to multiple query executions

 Upper bound placement rule: Place 𝜔 not
earlier than the augmented values need to be
accessed

Lower bound
placement rule

Upper bound
placement rule

x k!!!

14

Maximize Invariant Sub-Trees (2)

 We can separate the input part of 𝜔 from the actual projection of augmented values

 𝜔

- Performing the augmentation (collect() and augment())

- Projects placeholders

- Placed at the lower placement bound

 Ω

- Performing the projection of values

- Dereferences to the correct value array

- Placed at the upper placement bound





Maximize distance
between ω and Ω

15

Dynamic Selection Pull-Up

 Smaller intermediate join result…

 …but more varying nodes in the plan

 Place Ω as describe before

 Larger invariant subplan…

 …but increased join results

Open questions:
 Cost model for this decision?
 Selectivity estimation of the predicate?

16

Dynamic Selection Pull-Up (2)

 Binary decision  decide for the minimum cost of the subtree above 𝜔

𝐶𝑘 𝜔, =

𝐶1 𝜔,Ω +

𝑖=1

𝑘

𝑠𝑖 ∙ 𝐶1(𝜔, 𝑜) (𝑃𝑢𝑙𝑙 − 𝑢𝑝)

𝑖=1

𝑘

𝑠𝑖 ∙ 𝐶1(𝜔, 𝑜) (𝑛𝑜 𝑃𝑢𝑙𝑙 − 𝑢𝑝)

 𝐶 𝑥, 𝑦 : cost of the subplan from operator x to y

 𝑠𝑖
- Selectivity of the ith data source for the attribute in question

- Not known at plan-time  determined in the augment() phase

⊥

⊥

⊥

18

Experimental Setup

 Variation of TPC-H replacing generic
identifiers with real-world entities, e.g. real
company names for the Supplier relation

 Subset of TPC-H queries in which dimension
tables are used

 Added arbitrary where-clauses to one of the
dimensions: “relation.X > Y”

 Number of augmentations k ∈ (1, 3, 5, 10)

 Selectivity s ranging between 0.01 and 0.99 in
ten steps

PostgreSQL + DrillBeyond
extension

http://github.com/JulianEberius/DrillBeyond

Entity Augmentation System
REA

http://github.com/JulianEberius/REA

Dresden Web Table Corpus
(125M web tables)

http://wwwdb.inf.tu-dresden.de/misc/dwtc

ta
lk

ye
st

e
rd

a
y

http://github.com/JulianEberius/DrillBeyond
http://github.com/JulianEberius/REA
http://wwwdb.inf.tu-dresden.de/misc/dwtc

19

Overall Performance

No Optimizations 2.27 1.82

Invariant Caching 1.99 1.59

Static 𝜔/Ω 1.79 2.35

Dynamic 𝜔/Ω 1.21 0.67

Dynamic 𝜔/Ω + Re-Opt. 1.13 0.28

20

Performance of query 9, by selectivity

21

Summary

 Integration of top-k entity augmentation system into a RDBMS

 Multiple alternative query result solving the uncertainty and ambiguity of
the automated integration

𝜔/Ω

 Implemented in traditional interface functions: Init(), Next() and ReScan()

 Own cost model

 Invariant Caching

 Maximization of invariant sub-trees

 Selection push-down versus selection pull-up (runtime reoptimization)

