Formal-methods support for runtime adaptation in role-based systems

Max Korn
Chair
Institute of Theoretical Computer Science – TU Dresden
16-11-2020
Knowledge System

Analyse

Plan

Monitor

Execute

System
Outline

State of the Art

Contributions
- PMC-based Decision Making
- Statistical Analysis of Decider Performance

Experiments

Conclusion
State of the Art

System-verification

Verify system properties at the design stage, like:

- Resilience (Cámara and de Lemos (2012))
- Safety (Güdemann, Ortmeier, and Reif (2006))
- Performance (M. Becker, Luckey, and S. Becker (2013))
State of the Art

System-verification

Verify system properties at the design stage, like:

- Resilience (Câmara and de Lemos (2012))
- Safety (Güdemann, Ortmeier, and Reif (2006))
- Performance (M. Becker, Luckey, and S. Becker (2013))

Decision making

Effective decision making by computing expected consequences of decisions
State of the Art

System-verification

Verify system properties at the design stage, like:
- Resilience (Câmara and de Lemos (2012))
- Safety (Güdemann, Ortmeier, and Reif (2006))
- Performance (M. Becker, Luckey, and S. Becker (2013))

Decision making

Effective decision making by computing expected consequences of decisions

Main Challenge
Complexity of system representation
Decision making with Formal Methods

- Accuracy
- Tradeoff
- Memory
Decision making with Formal Methods

- simulation reduction (Calinescu et al. (2011))
- statistical methods (Iftikhar and Weyns (2014))
Decision making with Formal Methods

- simulation reduction (Calinescu et al. (2011))
- statistical methods (Iftikhar and Weyns (2014))
- Parametric Model Checking (Filieri, Ghezzi, and Tamburrelli (2011))
- Pre-computation of Scenarios (Saller, Lochau, and Reimund (2013))
Contributions
Fundamental Concept

- Adaptive system
- Monitoring & Analysis
- Execution
- Plan

PMC-supported decision making
Fundamental Concept

Adaptive system

Monitoring & Analysis

Execution

Plan

PMC-based offline Analysis on system model
Fundamental Concept

Adaptive system

Monitoring & Analysis

Plan

Execution

PMC-based offline Analysis on system model

Database
Fundamental Concept

Adaptive system

Monitoring & Analysis

Execution

PMC-supported decision making

PMC-based offline Analysis on system model

Database
PMC-based Decision Making

- System model
- Metrics to compute
- Probabilistic Model Checking
- Results
Objective of the Decider

Split the global objective into multiple local metrics.
Objective of the Decider

Split the **global objective** into multiple **local metrics**
Objective of the Decider

Split the **global objective** into multiple **local metrics**

Local Metrics

- $Pr(P_1)$
- $Exp(E_1)$
- \vdots
Objective of the Decider

Split the global objective into multiple local metrics

Global Objective

- keep $P_1 \geq 0.9$
- minimise E_1
- ...

Local Metrics

- $Pr(P_1)$
- $Exp(E_1)$
- ...

Objective of the Decider

Split the **global objective** into multiple **local metrics**

Global Objective

Strategy
- keep $P_1 \geq 0.9$
- minimise E_1
- ...

Local Metrics
- $Pr(P_1)$
- $Exp(E_1)$
- ...

PMC-based Decision Making

- System model
- Metrics to compute
- Probabilistic Model Checking
- Results
PMC-based Decision Making

- System model
- Probabilistic Model Checking
- Local optimization metrics
- Results
PMC-based Decision Making

family of system instances → family model → Probabilistic Model Checking → Results

local optimization metrics

Probabilistic Model Checking
Family Model

Core Model

1

Environment 1

Environment 2

Environment 3

Plan 1

Plan 2

Plan 3
Family Model

Context

Environment 1

Environment 2

Environment 3
Family Model

Adaptation

Context

Core Model
Family Model

Adaptation

Context

Adaption

Plan 1

Plan 2

Plan 3
Family Model

- Adaptation
- Context
- Core Model
- Monitor

Environment 1
Environment 2
Environment 3

Adaptation
Context
Monitor
Family Model

Adaptation → Context

Core Model

Environment 1
Environment 2
Environment 3

Plan 1 → Plan 2 → Plan 3

Monitor
PMC-based Decision Making

- Family of system instances
- Family model
- Probabilistic Model Checking
- Local optimization metrics
- Results
PMC-based Decision Making

- Family of system instances
- Family model
- Local optimization metrics
- Probabilistic Model Checking
- Database
Database

<table>
<thead>
<tr>
<th>Environment</th>
<th>Plan</th>
<th>Observable Variable 1</th>
<th>Observable Variable 2</th>
<th>P1</th>
<th>E1</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.7</td>
<td>34.5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.64</td>
<td>29.0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.61</td>
<td>28.7</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.57</td>
<td>25.1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.9</td>
<td>50.1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0.95</td>
<td>45.6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0.81</td>
<td>33.6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0.89</td>
<td>34.8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>87.3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.4</td>
<td>90.1</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Fundamental Concept

Adaptive system

Monitoring & Analysis

PMC-supported decision making

Execution

PMC-based offline Analysis on system model

Database
Objective of the Decider

Split the **global objective** into multiple **local metrics**

Global Objective

Strategy

- keep $P1 \geq 0.9$
- minimise $E1$

Local Metrics

- $Pr(P1)$
- $Exp(E1)$
- :
Fundamental Concept

Adaptive system

PMC-supported decision making

Monitoring & Analysis

Execution

PMC-based offline Analysis on system model

Database
Statistical Analysis of Decider Performance

1. Execute
2. Plan
3. Monitor & Analyse
4. running System

Feedback loop: Execute -> Plan -> Monitor & Analyse -> running System -> Execute
Statistical Analysis of Decider Performance

Runtime System Model

Execute

Plan

Monitor & Analyse
Statistical Analysis of Decider Performance

- Execute
- Plan
- runtime System Model
- Monitoring System State

Activation of plan features
Statistical Analysis of Decider Performance

- Execute
- runtime System Model
- Monitoring System State
- Database Lookup
Statistical Analysis of Decider Performance

Activation of plan features

runtime System Model

Monitoring System State

Database Lookup
Experiments
Tooling

Implemented using the modelling language ProFeat1 and the Model Checker Prism2.

1Chrszon et al. (2018)
2Kwiatkowska, Norman, and Parker (2011)
Tooling

Implemented using the modelling language ProFeat1 and the Model Checker Prism2.

Successful self-adaptation on Prism case-study models:

1Chrszon et al. (2018)
2Kwiatkowska, Norman, and Parker (2011)
Tooling

Implemented using the modelling language ProFeat1 and the Model Checker Prism2.

Successful self-adaptation on Prism case-study models:

- Real Time Voltage Scaling (Kwiatkowska, Norman, and Parker (2005))
- Human in the Loop UAV Mission Planning (Feng et al. (2015))
- Network Virus Infection (Kwiatkowska, Norman, Parker, and Vigliotti (2009))

1Chrszon et al. (2018)
2Kwiatkowska, Norman, and Parker (2011)
Experiment Scenario

Adaptive DBMS
Experiment Scenario

Adaptive DBMS
Experiment Scenario

Adaptive DBMS

- Adaptation
 - Cores
 - Frequency
 - Hyper-Threading

Tasks vs. Time (t)
Global Objective

- **Reduce Energy Costs**

 - **Schedule**: \(\text{Pr} \left(\text{all tasks computed} \right) \)
 - **Costs**: \(\text{Exp} \left(\text{Costs} \right) \)
 - **Budget**: \(\text{Pr} \left(\text{all tasks computed} \land \text{costs in budget} \right) \)
Global Objective

Compute all tasks
Global Objective

Compute all tasks

reduce Energy Costs
Global Objective

Compute all tasks \hspace{5cm} \text{Trade-off} \hspace{5cm} \text{reduce Energy Costs}

- **Global Objective**
 - **Reduce Energy Costs**
 - Compute all tasks
 - Schedule: $\text{Pr}(\text{all tasks computed})$
 - Costs: $\text{Exp}(\text{Costs})$
 - Budget: $\text{Pr}(\text{all tasks computed} \land \text{costs in budget})$
Global Objective

Compute all tasks $\xrightarrow{\text{Trade-off}}$ reduce Energy Costs

Schedule: $Pr(\text{all tasks computed})$
Global Objective

- **Global Objective**
 - **Reduce Energy Costs**
 - **Compute all tasks**
 - **Trade-off**
 - **Schedule:** $\Pr(\text{all tasks computed})$
 - **Costs:** $\Exp(\text{Costs})$
Global Objective

Compute all tasks

Trade-off

reduce Energy Costs

Schedule: $Pr(\text{all tasks computed})$

Costs: $Exp(\text{Costs})$

Budget: $Pr(\text{all tasks computed} \land \text{costs in budget})$
Experimental Setup

- Environment
Experimental Setup

- Environment
- lookahead

![Bar chart showing tasks over time](chart.png)

<table>
<thead>
<tr>
<th>time</th>
<th>tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>
Experimental Setup

- Environment
- lookahead
- time between decisions
Experimental Setup

- Environment
- lookahead
- time between decisions
- noise-factor
Experimental Setup

- Environment
 - lookahead
 - time between decisions
- noise-factor
- Strategy

Max-Schedule:

- maximise Schedule

Filter-Schedule:

- minimise Costs

Max-Budget:

- keep Schedule ≥ 0
- maximise Budget

22
Experimental Setup

- Environment
- lookahead
- time between decisions
- noise-factor
- Strategy
 - ▶ Max-Schedule

Max-Schedule:

maximise Schedule

mininise Costs
Experimental Setup

- Environment
- lookahead
- time between decisions
- noise-factor
- Strategy
 - Max-Schedule
 - Filter-Schedule

Filter-Schedule:

keep Schedule ≥ 0.9

minimise Costs
Experimental Setup

- Environment
- lookahead
- time between decisions
- noise-factor
- Strategy
 - Max-Schedule
 - Filter-Schedule
 - Max-Budget

Max-Budget:

maximise Budget

minimise Costs
Effect of Lookahead

Lookahead: *
Decisions: *
Noise: 0
Strategy: Max-Budget
Effect of Noise

Lookahead: 10
Decisions: *
Noise: *
Strategy: Max-Budget

![Bar chart showing effect of noise]

Graph showing budget changes with noise-factor:
- Optimum
- Decide every step
- Decide every 2 steps
- Decide every 3 steps

0 0.2 0.4 0.6 0.8 1
noise-factor

0 0.2 0.4 0.6 0.8 1
Budget
Strategy Comparison

Lookahead: *
Decisions: every step
Noise: 0
Strategy: *

Lookahead

Schedule

Costs

Max-Schedule

Max-Schedule
Strategy Comparison

Lookahead: *
Decisions: every step
Noise: 0
Strategy: *

[Graphs showing schedule and costs over lookahead for Max-Schedule and Filter-Schedule]
Strategy Comparison

Lookahead: *
Decisions: every step
Noise: 0
Strategy: *

![Chart showing comparison between schedules and costs over lookahead.]

- Schedule:
 - Max-Schedule
 - Filter-Schedule
 - Max-Budget

- Costs:
 - Max-Schedule
 - Filter-Schedule
 - Max-Budget
Conclusion
Conclusion

- Decision making approach using offline PMC
Conclusion

- Decision making approach using offline PMC
- Analysis tool using statistic MC
Conclusion

- Decision making approach using offline PMC
- Analysis tool using statistic MC
Conclusion

- Decision making approach using offline PMC
- Analysis tool using statistic MC

Paper in progress
Conclusion

- Decision making approach using offline PMC
- Analysis tool using statistic MC

Paper in progress

Further analysis:
- effects of environmental changes
Conclusion

- Decision making approach using offline PMC
- Analysis tool using statistic MC

Paper in progress

Further analysis:
- effects of environmental changes
- separating global objective in local metrics
Related Work I

Related Work II

Related Work III

