Dataflow Programming for Big Data Stream Processing

Kai-Uwe Sattler
Database & Information Systems Group
TU Ilmenau
www.tu-ilmenau.de/dbis
Outline

- Big Dynamic Data: Use Cases & Requirements
- Foundations of Stream Processing
- APIs, Query & Dataflow Languages
- Piglet: Language & Compiler
- Conclusion & Outlook

Quelle: pixabay.com
The 4th Paradigm & Big Data

- J. Gray: shift of paradigm in natural sciences
 - 1000 years ago: empirical experiments
 - Since 100 years: grand theories, models, ...
 - Last decades: Computational Sciences (Simulation)
 - today: data exploration (eSciences)

- Big Data = „too big“ for traditional methods
Dynamic Data in the Big Data Age

- Availability of sensors connecting IT and physical world

- Enormous volume of data from real-world observations (= „dirty“ data)
- Many heterogeneous sources incl. potentially infinite streams
- Valid or useful only for a short period of time
- Not inspectible by humans anymore
Use Case: Linked Stream Data

- Combine and analyze sensor data e.g. from weather stations (e.g. www.weatherground.com)
- Link sensor data with metadata (sensors, stations, GeoNames)
- SRBench https://www.w3.org/wiki/SRBench

Observations

Metadata

Detect a hurricane, detect a station observing a blizzard, hourly average temperature,
Use Case: Traffic Monitoring

- Traffic monitoring using
 - Toll stations,
 - Induction loops,
 - smartphones, ...

- tasks:
 - Toll calculation
 - Speed control
 - Detection of traffic jam and accidents

- Further applications:
 - Variable toll (based on time, congestion, …)
 - Dynamic route planning
Use Case: Engineering Data

- Find defects in nano structures (e.g. electronic components)
- 3D surface measurement (x,y position, z measure)
- Resolution: nm (100s MB - 10s TBs per scan)

- online source localization in human brain
- EEG/MEG sensors, data rate: 600-5000 Hz
- Complex analysis pipeline: signal filtering, decomposition, matrix inversion, time-based folding
Common Concepts

- „Stream“ of data items
- Combining base operators
- Declarative Specification

• Abstractions for
 • data flow
 • execution model
 • data + operators
 \(\cong\) database queries

Further applications

- System monitoring, smart grid, process automation (Industry 4.0), Social media analysis, ...
Outline

- Big Dynamic Data: Use Cases & Requirements
- Foundations of Stream Processing
 - Processing Model
 - Windows
 - Basic Operators
 - Scalable Stream Processing
 - Examples
- APIs, Query & Dataflow Languages
- Piglet: Language & Compiler
- Conclusion & Outlook

Quelle: pixabay.com
Processing models

- Batch Processing = Store & Process
- Online Processing = Continuous Query Processing (CQP)

- Traditional databases
- MapReduce
- Data Stream Management Systems (DSMS), Stream Processing Engines (SPE)
Stream Processing: Basic Principles

- Data stream := <o₀, o₁, o₂, ...>
- Stream element: oᵢ = (data items, timestamp)

- Publish subscribe paradigm

- Challenges
 - (Theoretically) unbounded stream
 - Limited resources (memory, CPU time, ...) for state (computation and representation)
Controlling Stream Processing: Punctuations

- Punctuations mark the end of a substream
 - Conceptually, as a predicate that evaluates to false for every element following the punctuation
 - But represented as data item (=stream element)
- Simple form = heart beat
- Advanced forms: end of window, end of stream, end of session, end of auction,
- Processing punctuations:
 - $\text{match}(t: \text{Tuple}, p: \text{Punctuation}) \rightarrow \text{bool}$
 - $\text{combine}(p: \text{Punctuation}, q: \text{Punctuation}) \rightarrow \text{Punctuation}$
Punctuations: Example

- Allows to
 - implement e.g. window semantics
 - Avoid blocking
 - Optimize processing of aggregates, etc.
 - Out-of-order processing
Windows on Data Streams

- Aggregations, joins etc. would require access to all data elements ➞ blocking operators
- Solution: define a window (subset) over a data stream

Different possible semantics:
- Time-based: last 5 minutes
- Count-based: 100 data items
- Data-driven: Web session

Eviction strategies: sliding vs. tumbling vs. landmark
Windowed Aggregation & Joins

- Examples:
 - Moving average over 5 minutes (sliding window)
 - URL access per day (tumbling window)

- Example:
 - Correlated observations, e.g. high temperatures within a certain period of time
Window Implementation

- Strategies for incremental evaluation
 - Input triggered
 - Negative tuples

 on report:
 - Re-evaluation
 - Incremental evaluation
 - Possible delay in evaluation if no new tuple arrives
 - Hard to separate window
 - Allows to implement windows separately
 - Avoids delay
 - Increases the number of tuples

\[
2 \rightarrow \begin{array}{ccc}
 & 5 & 1 & 3 \\
\end{array}
\]
\[\text{sum: } -3 +2\]

\[
2 \rightarrow \begin{array}{ccc}
 & 5 & 1 & 3 \\
\end{array}
\]
\[\begin{array}{c}
+2 \\
-3
\end{array}\rightarrow \text{aggregate}\]
Complex Event Processing (CEP)

- Detecting complex patterns of events in a stream of data
 - Event = stream element; complex event = sequence of events (not necessarily consecutively)
 - Defined using logical and temporal conditions

Data values + combinations

Within a given period of time

SEQ(A, B, C) WITH

- A.Temp > 23°C &&
- B.Station = A.Station && B.Temp < A.Temp &&
- C.Station = A.Station && A.Temp-C.Temp > 3

Example events:

- 24°C, Station#1, 13:00
- 23°C, Station#2, 13:00
- 21°C, Station#1, 13:02
- 20°C, Station#1, 13:05
Composite events constructed e.g. by
- SEQ, AND, OR, NEG, ...
- $\text{SEQ}(e_1, e_2) \rightarrow (e_1, t_1) \land (e_2, t_2) \land t_1 \leq t_2 \land e_1, e_2 \in \mathbb{W}$

Implemented by constructing a NFA
Example: SEQ(A, B, C)
Scalability: Data-parallel processing

- High volume of data, high arrival rates
 - parallel processing (Multicore CPUs, Cluster, ...)
 - requires partitioning of the data stream
Data parallelism in data streams

- **Non-trivial problem**
 - Stateful operators (e.g. aggregates, ...)
 - Operators relying on ordering of tuples (e.g. windows, CEP, ...)
 - Dynamic load balancing / elasticity in case of changing workloads or skewed data
 - State migration

- **Tasks**
 - Partitioning (split + merge)
 - Safe auto-parallelization
 - State management + migration
Partitioning

- Some possible solutions
 - Partitioning: hash-based (e.g. consistent hashing), range-based, ...
 - Operator-specific merge
 - „semantic“ partitioning

\[
\text{SEQ}(A, B) \text{ WITH } B.\text{Id} = A.\text{Id} \text{ & & ...} \\
\]

\[
p_i = f(\text{Id}) \\
p_1 = [o_0, o_2, ...] \\
p_2 = [o_{i+1}, o_{2i+i}, ...] \\
\text{avg} \\
[\text{sum}(p_1), \text{count}(p_1)] \\
\]

\[
@t_j: \frac{\sum_i \text{sum}(p_i)}{\sum_i \text{count}(p_i)} \\
\]
Fault tolerance

- Continuous queries on unbounded data streams require to deal with
 - Loss of message
 - Guaranteed message delivery:
 - Best effort
 - At least once
 - Exactly once
 - Node failures
 - Redundant processing and/or recovery
Fault Tolerance: Standby

- Standby

- Simple for stateless operators like filters, etc.
- But for stateful operators (e.g. aggregates, ...)??

- Hot Standby
Fault Tolerance: Upstream Backup

- Operator buffers data sent to the next operator until acknowledgement
- In case of failure: retransmit
- Can be combined with standby/replicas
Fault Tolerance: Checkpointing

- Checkpointing/Logging

 - Basic idea:
 - Periodically/on changes: saving the state (checkpointing, snapshot) or saving state changes (logging)
 - In case of failures: recover the state from the log

- Challenges:
 - State management (buffer, routing, processing), overhead
 - Consistency among multiple operators during recovery
Challenges in Dataflow Compilation

- **Optimization**: finding the best plan for a declaratively specified dataflow
 - Choosing algorithms (for operators) and data structures (for windows, state representation, ...)
 - Reordering operators, e.g. pushdown of selection
 - Auto-parallelization & partitioning of data streams for distributed/parallel processing
 - Placement of operators at computing nodes
 - Resource allocation (memory, CPU time, ...)
 - ...

- **Extensibility**: integrating and optimizing new operators (possible as black box) and new target platforms
Optimization

- requires
 - Knowledge about algebraic properties of operators such as associativity, commutativity → reordering
 - Transformations and their properties
 - Cost model: expected processing costs, arrival rates, data distribution, ...

- Challenges
 - Operators beyond standard (relational) operators = user-defined code: functions, operators, ...
 - Cost model: parameters, statistics for streams
Optimizations in Stream Processing

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Graph</th>
<th>Semantics</th>
<th>Dynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator reordering</td>
<td>changed</td>
<td>unchanged</td>
<td>(depends)</td>
</tr>
<tr>
<td>Redundancy elimination</td>
<td>changed</td>
<td>unchanged</td>
<td>(depends)</td>
</tr>
<tr>
<td>Operator separation</td>
<td>changed</td>
<td>unchanged</td>
<td>static</td>
</tr>
<tr>
<td>Fusion</td>
<td>changed</td>
<td>unchanged</td>
<td>(depends)</td>
</tr>
<tr>
<td>Fission</td>
<td>changed</td>
<td>(depends)</td>
<td>(depends)</td>
</tr>
<tr>
<td>Placement</td>
<td>unchanged</td>
<td>unchanged</td>
<td>(depends)</td>
</tr>
<tr>
<td>Load balancing</td>
<td>unchanged</td>
<td>unchanged</td>
<td>(depends)</td>
</tr>
<tr>
<td>State sharing</td>
<td>unchanged</td>
<td>unchanged</td>
<td>static</td>
</tr>
<tr>
<td>Batching</td>
<td>unchanged</td>
<td>unchanged</td>
<td>(depends)</td>
</tr>
<tr>
<td>Algorithm selection</td>
<td>unchanged</td>
<td>(depends)</td>
<td>(depends)</td>
</tr>
<tr>
<td>Load shedding</td>
<td>unchanged</td>
<td>changed</td>
<td>dynamic</td>
</tr>
</tbody>
</table>
Cost model

- Traditional cost-based query optimization is based on cardinality estimation ➾ inadequate for unbounded streams

- Possible solution: rate-based cost estimation (Viglas et al.: Rate-based query optimization for streaming information sources, SIGMOD 2002)

\[
\text{output rate} = \frac{\text{#outputs transmitted}}{\text{time for transmission}}
\]

Challenges:
- Fluctuating streams
- Data-parallel processing
Examples: Storm

- **scalable stream processing platform by Twitter**
 - Tuple-wise computation model ➞ low latency
 - Processing components can be defined in any language
 - Stateless processing

Components:

- **Spouts**: source of tuples (from e.g. MQs)
- **Bolts**: consumes & processes input streams and passes them to other bolts or external systems
- **Wiring**: spouts and bolts leads to a directed graph called **topology**
- **Spouts and bolts associated with set of tasks** that run in parallel on multiple machines
Storm: Fault Tolerance

- At-least-once guarantee via Record ACKs

- Acker:
 - „logs“ the progress of each tuple emitted by spout
Storm & Trident

- High-level abstraction built on top of Storm core: operators like filter, join, groupBy, ...
- Stream-oriented API + UDFs
- Stateful, incremental processing
- Micro-Batch oriented (ordered & partitionable)
- Exactly-once semantics
- Trident topology compiled into spouts and bolt
Heron

- New real-time streaming system based on Storm
- Introduced June 2015 by Twitter (SIGMOD)
- Fully compatible with Storm API
- Container-based implementation
- Back pressure mechanism
- Easy debugging of heron topologies through UI
- better performance than Storm (latency + throughput)
Heron: Topology Architecture
Examples: Spark Streaming

- extension of the core Spark API for stream processing
- Data sources: Kafka, Flume, Twitter, ZeroMQ, TCP sockets, ...
- Key abstraction: discretized streams (DStream)
 - micro-batch = series of RDDs
 - Stream computation = series of deterministic batch computation at a given time interval
Examples: Spark Streaming

- API very similar to Spark core (Java, Scala, Python)
 - (stateless) transformations on DStreams: map, filter, reduce, repartition, cogroup, ...
 - Stateful operators: time-based window operations, incremental aggregation, time-skewed joins

- Fault tolerance:
 - Exactly-once semantics using checkpoints (asynchronous replication of state RDDs)
Examples: Flink

- Open source distributed stream processing platform
- Batch support built on top
- Adjustable latency/throughput through tuple buffers
- Pipelining principle with natural flow control
- Stateful processing

Flink: Optimizer

- Cost-based (plan enumeration)
- Physical optimization for operators (e.g. Hash/Merge join)
- Different data shipping strategies (forward, partition, broadcast)

Source: http://de.slideshare.net/Hadoop_Summit/apache-flink-deep-dive
Flink: Fault Tolerance

- Asynchronous Barrier Snapshotting (ABS)
- Stream barriers alongside the data (≡ punctuations)
- Alignment at the operators
- State report to state backend (e.g. HDFS)

Outline

- Big Dynamic Data: Use Cases & Requirements
- Foundations of Stream Processing
- APIs, Query & Dataflow Languages
- Piglet: Language & Compiler
- Conclusion & Outlook
Languages for Data Stream Processing

- Declarative specification of stream processing pipelines using visual or textual languages

Declarative specification of stream processing pipelines using visual or textual languages

```scala
val ssc = new StreamingContext(sparkContext, Seconds(1))
val tweets = TwitterUtils.createStream(ssc, auth)
val hashTags = tweets.flatMap(tweet => extractTags(tweet))
val counts = hashTags.window(Minutes(1), Seconds(5)).countByValue()
counts.foreachRDD(rdd => rdd.foreach(elem => println(elem)))
```

DSL (Scala, Python, ...)

```sql
SELECT Lane, AVG(Speed) FROM Traffic [RANGE 1 HOUR] GROUP BY Lane
in = SOCKET_READ ‘*:8080’ AS (...);
b = WINDOW in RANGE 1 HOUR;
c = GROUP b BY Lane;
out = FOREACH c GENERATE b.Lane, AVG(b.Speed);
```
APIs, DSLs, and Query Languages

- Level of abstraction, optimizability
 - Language-integrated DSL
 - Scala, R, Python, ...
 - Query Language
 - SparkSQL, CQL, ...
 - Dataflow Language
 - Pig, Jaql, ...

- Complexity, expressiveness
 - Engine
 - API
DSL for Big Data (Stream) Processing

- Functional programming languages
 - Inspired by LINQ, Java Streaming API, ...
 - Easy construction of complex dataflows from simple transformation operators

- Lazy evaluation
 - Evaluation on demand instead of immediately

Processing
- First, construct a DAG only – don’t execute
- Only some actions (print, save) trigger execution
How to implement a DSL?

- Example: Scala DSL for Apache Spark
 - RDD abstraction for dataset
 - transformations as methods of RDD class

```scala
class RDD[T] {
  val plan: DAG  /* plan representation */
  def op1(): RDD[T] = { ... plan.append("op1") /* add operator to DAG */ }
  def action(): RDD[T] = { /* process plan & execute */ }
}
```

- Usage:
 - create a RDD object
 - apply transformations

```scala
val rdd = ...
rdd.op1()
  .op2()
  .action()
```
DSL for the Non-Programmer?

- You have to ...
 - ... know Scala, Python or Java.
 - ... know the API of your underlying platform (Spark with RDD or DataFrame or ..., Flink, ...).
 - ... write boilerplate code to represent your data (generic lists, tuples, case classes).
 - ... implement, build, and deploy your user-defined operators.
 - ... optimize your program still by hand (but there is some work addressing this issue).
Outline

- Big Dynamic Data: Use Cases & Requirements
- Foundations of Stream Processing
- APIs, Query & Dataflow Languages
- Piglet: Language & Compiler
 - Overview
 - Language Features
 - Extensible Rewriting
 - Code Generation
- Conclusion & Outlook

Quelle: pixabay.com
Piglet = Pig Latin++

- Language extensions + compiler for a Pig Latin derivate
 - support for different target backends, e.g. Spark, Flink, ...

  ```
  > piglet --backend spark --interactive --master yarn-client
  Welcome to PigREPL ver. 0.3
  pigsh>
  ```

- language extensions for data stream processing, spatial data, SPARQL, CEP, ...

- seamless integration of user-defined code, operators & rewriting

- REPL interface

- available at https://github.com/dbis-ilm/piglet
Piglet Compiler Architecture

- Piglet
- Parser
- Rewriter
- REPL
- Dataflow plan
- Code Generator
- Scala Compiler
- Platform libraries
 - Spark
 - Flink
- Plugins
 - Template
 - Flink
 - Spark
 - Storm
 - MR
- Execution Environment

K. Sattler | TU Ilmenau 07.02.17
Comparison with Related Work

- **Why Pig Latin language?**
 - Language syntax doesn’t really matter.

- **Apache Pig Latin**
 - Hadoop backend, some initial(?) support for Spark
 - Fixed & limited set of optimization rules

- **Apache Spark with Scala, SparkSQL, R, ...**
 - Multiple APIs & languages on the same backend

- **Google Dataflow, Apache Beam**
 - Supports (or will support) both streaming + batch
 - Java API only
 - Could be used as target backend, too
Piglet: Language Extensions

- Stream processing
- Complex event processing
- Support for spatial data
- SPARQL integration
- Integration of matrix data and R
Stream Processing

- stream processing engine as backend: Storm, Spark Streaming, Flink Streaming, ...
- streaming sources & sinks:
  ```java
  aBag = SOCKET_READ '127.0.0.1:8080' MODE Kafka
  USING PigStream(',' ') AS (...);
  ...
  SOCKET_WRITE anotherBag TO '141.44.24.124:9000';
  ```
- support for windows: sliding & tumbling, row-based & range-based
  ```java
  bwin = WINDOW stream RANGE 10 SECONDS;
  grpd = GROUP bwin BY key;
  cntd = FOREACH grpd GENERATE group, COUNT(bwin);
  ```
Mapping of Window Operations

- **Spark Streaming**
 - Time - sliding/tumbling

- **Flink Streaming**
 - Global, time, count, delta - sliding/tumbling
 - Various interpretations of time
 - Sliding scope: (slide length – window length)

- **Storm**
 - Not directly supported, instead in Trident: partitionPersist and stateQuery functions
Complex Event Processing

- **Primitive event** = stream element
- **Complex event** = sequence or combination of events

A tuple A (id = 1, x = 4, y = 0)

... tuple B (id = 1, x = 11, y = 0)

... tuple D (id = 1, x = 4, y = 7)

within 60 seconds

\[
\begin{align*}
A & : x < 10, \\
B & : id = A.id \land x > 10, \\
C & : y < 0, \\
D & : y \geq 0
\end{align*}
\]

\[
\text{win} = \text{WINDOW seq RANGE 60 SECONDS;}
\]

\[
\text{out} = \text{MATCH_EVENT win PATTERN SEQ(A,B,OR(C,D))}
\]

WITH (A: x < 10, B: id == A.id \&\& x > 10, ...);
Complex Event Processing

- CEP library for Spark and Flink
 - Implementation of a generic NFA
- Code generator for states & transitions

```
object MyNFA {
  ... 
}
...
val out = in.matchNFA(MyNFA.createNFA)
```

Piglet

states, transitions, & filter

CEPlib

NFACController
Spatial Data

- New data type geometry = wrapper for point, polyline, polygon
- Spatial predicates for FILTER
  ```scala
  res = SPATIAL_FILTER bag
       BY intersects($1, geometry(POLYGON((1.0 1.0, 1.0 2.0, ...))));
  ```
- Spatial join
  ```scala
  res = SPATIAL_JOIN bag1, bag2 ON intersects(bag1.$1, bag2.$1);
  ```
- Currently for Spark only
 - Uses SpatialRDD (R-tree based) if available
SpatialRDD

- Basic idea: use geo position as key for data partitioning to exploit locality of objects

- special type of Pair-RDD, i.e. RDD[(Geometry, V)]
 - provides spatial operations: intersection, contains, join

- seamless integration via Scala implicits to add spatial functions to RDD
Space Partitioning & Indexing

- **Spatial partitioning by binary space or grid partitioning**
 - partitions (internal represented as R tree) are used for partition pruning
 - can be materialized as index on disk and reused in other scripts

Diagram:
- Raw data → Spatial partitioning → Optional indexing → Query execution → Store to HDFS → Load from HDFS
SPARQL Integration

- Use „triple bag“ format instead of plain RDF triples for efficient processing (avoid expensive self joins)

```
{ predicate: bytearray,
  stmts: { (subject: bytearray, object: bytearray) }
}
```

- Two additional operators
 - **TUPLIFY**: produce triple bags from bag of triples
 - **BGP_FILTER**: filter operator with basic graph pattern (BGP)
 - can be implemented by joins or set of filters on triple bags

```
result = BGP_FILTER triples BY {
  ?a <produced> ?record .
  ?a <country> ?country .
  ?record <release> "2015" .
};
```
Optimizations in Piglet

- Reordering, eliminating or substituting nodes (operators)
 - Pushdown of FILTER and FOREACH ...GENERATE
 - Combine WINDOW with CEP, aggregates and joins
 - join ordering

- Choose among different implementations of operators
 - Implementation of BGP_FILTER: sequence of joins vs. FOREACH + FILTER on triple bags
 - Use (or construct) SpatialRDD for spatial predicates

- Spark tuning
 - Level of parallelism
 - Persisting intermediate datasets
 - Indexing
 - ...

Most tasks can be implemented by transformation rules!
Rewriting in Piglet

- Integrating new operators and supporting new targets requires transformation of dataflow graphs
 - replace nodes by others (e.g., SPLIT INTO by multiple FILTERs, BGP_FILTER by multiple joins)
 - use special operator implementations (e.g. JOIN on WINDOW, spatial predicates in FILTER)
 - exploit algebraic properties of user-defined (black box) operators
 - exploit indexes (e.g. spatial indexes) and materialization
A DSL for Rewriting

Scala-based DSL

toMerge[Filter,Filter] when {
 case (f1, f2) if f1.predicate != f2.predicate =>
} applyRule {
 case (f1, f2) => Some(Filter(..., And(f1.predicate, f2.predicate)))
}
Rewriting Rules

- Built-in rules as part of the dataflow compiler
 - e.g. `SPLIT INTO → FILTER`,
 - `BGP_FILTER → JOIN, ...`

- Target-specific rules
 - e.g. handling of `WINDOW` for stream processing backends,
 - Exploiting `SpatialRDD` for spatial predicates in `FILTER`

- User-defined rules
 - e.g. for user-defined operators
Extensible Rewriting

```
in = SOCKET_READ '*:8080' AS (...);
b = WINDOW in RANGE 1 HOUR;
c = GROUP b BY Lane;
out = FOREACH c
    GENERATE b.Lane, AVG(b.Speed);
```

Platform-specific code

user-provided rules

builtin rule set
Extensible Rewriting: Examples

- Adaptive spatial indexing

A = LOAD
B = FOREACH A GENERATE geometry($0) as geo;
C = SPATIAL_FILTER B BY containedBy(geo, geometry("POLYGON((...))"));

Insert operator for creating and using index

A = LOAD
B = FOREACH A GENERATE geometry($0) as geo;
X = INDEX B ON geo;
C = SPATIAL_FILTER X BY containedBy(geo, geometry("POLYGON((...))"));

- Possible reuse of index in other scripts ...
Extensible Rewriting: BGP_FILTER

- Mapping of BGP filter depends on structure of input data

```
result = BGP_FILTER inp BY {?s wgs84:lat ?o1 . ?s wgs84:long ?o2 .};v
```

- Input = bag of plain triples \Rightarrow self join

```
inp1 = FILTER inp BY predicate == 'wgs84:lat';
inp2 = FILTER inp BY predicate == 'wgs84:long';
result = JOIN inp1 BY (subject), inp2 BY (subject);
```

- Input = bag of tuples (bag of statements)

```
tmp = FOREACH inp {
    r1 = FILTER stmts BY predicate == 'wgs84:lat';
    r2 = FILTER stmts BY predicate == 'wgs84:long';
    GENERATE *, COUNT(r1) AS cnt1, COUNT(r2) AS cnt2;
};
result = FILTER tmp BY cnt1 > 0 AND cnt2 > 0;
```
User-defined Operators

- Standard approach in Pig: STREAM THROUGH
 - but requires to implement a special API
- Embedded code simplifies wrapping of existing code
 - Example: integration of a DBSCAN implementation for Spark

```
REGISTER 'dbscan-0.1.jar';
<%
def clustering(sc: SparkContext, inp: RDD[List[Double]],
    eps: Double, minPts: Int) = {
  val input = inp.map(t =>.Vectors.dense(t(0), t(1)))
  val op = new dbis.dbscan.DBScan().setEpsilon(eps).setMinPts(minPts)
  op.run(sc, input) }
%>
data = LOAD 'points.csv' USING PigStorage(',') AS (c1:double, c2:double);
result = STREAM pdata THROUGH clustering(0.1, 122);
...```
Macros to encapsulate STREAM THROUGH

REGISTER 'dbscan-0.1.jar';
<%
def clustering(sc: SparkContext, inp: RDD[List[Double]],
    eps: Double, minPts: Int) = {
    ...
}
%>

DEFINE dbscan(in, eps, minPts) RETURNS out {
    out = STREAM in THROUGH clustering(eps, minPts);
};

IMPORT 'dbscan.pig';

data = LOAD 'points.csv' USING PigStorage('','') AS (c1:double, c2:double);
result = dbscan(data, 0.1, 122);
...
User-defined Rewriting Rules

- Define a transformation rule as embedded code

```<%
@rule
toMerge[Filter,Filter] when {
 case (f1, f2) if f1.predicate != f2.predicate =>
} applyRule {
 case (f1, f2) => Some(Filter(…, And(f1.predicate, f2.predicate)))
}
%>
```

- Code sections can be imported via IMPORT
- Allows special rewriting of user-defined operators
Piglet: Code Generation

- compiling Pig $\to$ Spark/Flink generally easier than Pig $\to$ MapReduce (esp. for Scala)
- For basic operators mostly 1:1 mapping of Pig to Spark operators via template engine
- main task: dealing with schemas in a type-safe and efficient way
  - generating Scala case class for each schema (=type)
  - with typed parameters representing fields
  - Scala‘s Option type allows to implement null values
Outline

- Big Dynamic Data: Use Cases & Requirements
- Foundations of Stream Processing
- APIs, Query & Dataflow Languages
- Piglet: Language & Compiler

Conclusion & Outlook
Conclusion & Outlook

- Dynamic data becomes more and more important as big data
- Highly active research topic
  - Various systems, e.g. Spark, Flink, Kafka (Apache), Storm, Heron (Twitter), Beam, MillWheel (Google), ...
  - and commercial products, e.g. IBM InfoSphere Streams, Microsoft StreamInsight, ...
- But also a lot of existing work on stream processing
- New challenges: scalability, state management for large-scale systems, optimization of user-defined code, ...

Photo: Dolina Wiedzy CC BY-NC 2.0
Further Readings

- Historical papers on STREAM, Aurora, TelegraphCQ, Borealis, CQL, ...
- Papers and blogs on Storm, Heron, Flink, Spark Streaming, ...
- Windows & Semantics
  - Ghanem et al.: Incremental Evaluation of Sliding-Window Queries over Data Streams, TKDE 19(1), 2007
  - Tucker et al.: Exploiting Punctuation Semantics in Continuous Data Streams, TKDE 15(3), 2003
  - Krämer et al.: Semantics and Implementation of Continuous Sliding Window Queries over Data Streams, TODS 34(1), 2009
- CEP:
  - Wu et al.: High-Performance Complex Event Processing over Streams, SIGMOD 2006
  - Schultz-Moeller et al.: Distributed Complex Event Processing with Query Rewriting, DEBS 2009
- Fault Tolerance:
  - Hwang et al.: High-availability algorithms for distributed stream processing, ICDE 2005
- Partitioning & Optimization:
  - Viglas et al.: Rate-Based Query Optimization for Streaming Information Sources, SIGMOD 2002