Context-Sensitive Description Logics in a Dynamic Setting

Satyadharma Tirtarasa
25.04.2018

RoSI - TU Dresden
Role-based Software Infrastructures for continuous-context-sensitive Systems
Overview

Context-Sensitive DL in a Dynamic Setting
Description Logics of Context
Dynamic Setting

Contribution to RoSI
Context-Sensitive DL in a Dynamic Setting
Description Logics

• a **family** of formal knowledge representation languages
• decidable (most of them)
• feasible (most of the cases)

Syntax :

• N_C, N_R, N_I: concept, role, and individual names respectively
• a **TBox** \mathcal{T}: describes the hierarchy, relation between concepts
• a **ABox** \mathcal{A}: represents the data
• a **RBox** \mathcal{R}: describes the role properties and hierarchy
Concept Expression

\[C ::= N_c \mid (C \cap C) \mid (C \cup C) \mid \neg C \mid T \mid \perp \]

\[\exists r.C \mid \forall r.C \mid \geq nr.C \mid \leq nr.C \mid \exists r.Self \mid \{a\} \]

General Concept Inclusion (GCI) - TBox

\[C \sqsubseteq D. \]

\[C \equiv D \text{ stands for } C \sqsubseteq D \text{ and } D \sqsubseteq C. \]

Individual Assertions - ABox

\[C(a), \ r(a, b), \ a \approx b, \text{ or } a \not\approx b \]

Role Inclusion - RBox

\[s_1 \circ \ldots \circ s_n \sqsubseteq r \]
Figure 1: CROM - ConDL

Two-dimensional context DLs $\mathcal{L}_m[\mathcal{L}_o]$ [2]

Axiom Examples

<table>
<thead>
<tr>
<th>$\top \sqsubseteq [\exists \text{worksFor} . {\text{Siemens}} \sqsubseteq \exists \text{hasAccessRights} . {\text{Siemens}}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>WORK $\sqsubseteq [\exists \text{worksFor} . (\text{Bob, Siemens})]$</td>
</tr>
</tbody>
</table>
Two-dimensional context DLs $\mathcal{L}_m[\mathcal{L}_o]$ [2]

Axiom Examples

<table>
<thead>
<tr>
<th>Axiom</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\top \sqsubseteq \exists worksFor.{\text{Siemens}} \sqsubseteq \exists hasAccessRights.{\text{Siemens}}$</td>
</tr>
<tr>
<td>$\text{WORK} \sqsubseteq \exists worksFor.(\text{Bob, Siemens})$</td>
</tr>
</tbody>
</table>

Other considerations (e.g. rigid concepts and roles)
CROM to ConDL

DL - $\text{SHOIQ}[[\text{SHOIQ}]]$ [3]

Verifying consistency of CROM models

- encode the CROM model to ConDL
- JConHT: a $\text{SHOIQ}[[\text{SHOIQ}]]$ reasoner
- 2EXPTIME-hard
Dynamic Setting

Possible approach:

- situation calculus
- temporal logics
- non-monotonic logics
Dynamic Setting

Possible approach:

- situation calculus
- temporal logics
- non-monotonic logics

How many layers do we need?

- $\mathcal{L}_m[\mathcal{L}_o] \ vs$
- $\mathcal{L}_{m-1}[\mathcal{L}_m[\mathcal{L}_o]]$
Dynamic Setting

Possible approach:
- situation calculus
- temporal logics
- non-monotonic logics

How many layers do we need?
- $\mathcal{L}_m[\mathcal{L}_o]$ vs $\mathcal{L}_{m-1}[\mathcal{L}_m[\mathcal{L}_o]]$

Should we go deeper...?

https://suwalls.com/digital-art/recursive-painting-9137
A Step Back

What are the questions we want to answer?

Figure 2: Knowledge Base System Schema
Situation Calculus

Used to describe a dynamic domain.
Situation Calculus

Used to describe a dynamic domain.

- actions that can be performed in the world
- fluents that describe the state of the world
- situations

FOL
Situation Calculus

Used to describe a dynamic domain.

\[
\begin{align*}
\text{FOL} &= \{ \\
& \quad \text{• actions that can be performed in the world} \\
& \quad \text{• fluents that describe the state of the world} \\
& \quad \text{• situations} \\
\}\end{align*}
\]

A situation is:

- *init*, the initial situation, or
- *do*(\(A, S\)), the situation resulting from doing action \(A\) in situation \(S\), if it is possible to do action \(A\) in situation \(S\).

Generally: undecidable

Situation calculus extended with DLs: undecided [1]
Some examples (of LTL):

- $p \rightarrow q U r$: p implies q until r
- $\bigcirc p \rightarrow \bigcirc \bigcirc r$: if p holds at next step, r holds at two next steps

“Standard” temporal logics: decidable.
Contribution to RoSI
Real World Case - Chemical Reaction

Context-dependent:
- temperature
- catalyst
- surface area
- etc.

Some reactions are irreversible.

Some interesting questions:

- which combination of contexts that leads to unintended conclusion
- can we make sure a data is safe after an individual change the role?

The formal model is static
The formal model is static(?)
The formal model is static(?)

Thus, we need a dynamic language for CROM (e.g. event-based)
Questions?
Questions?
Idea?
Calvanese, Diego and De Giacomo, Giuseppe and Soutchanski, Mikhail
On the undecidability of the situation calculus extended with description logic ontologies.

Böhme, Stephan and Lippmann, Marcel
Decidable description logics of context with rigid roles.

Böhme, Stephan and Kühn, Thomas
Reasoning on Context-Dependent Domain Models.
Rudolph, Sebastian and Schweizer, Lukas and Tirtarasa, Satyadharma
Wolpertinger: A Fixed-Domain Reasoner
ISWC 2017 : Demo Track

Sarah Alice Gaggl, Sebastian Rudolph, and Lukas Schweizer.
Fixed-domain reasoning for description logics.