Role-based Network Protocol Adaptability

José Irigon de Irigon

Technische Universität Dresden

jose.irigon@tu-dresden.de

April 24, 2018
Overview

1. Reasoning
 - Why to adapt network protocols?

2. Network protocol adaptation in RoSI

3. Possible Use cases
 - Role based routing in DTN
 - Role based update in DTN
 - Role based Stack Parametrization
Is adaptation in Network Protocols a real need?

- Some requirements may not be known in advance
- Some desirable (sometimes conflicting) goals
 - Flexible
 - Maintainable
 - Efficient
 - Modular
 - Low complexity
 - Highly extensible
 - Fast to experiment/prototype
 - ...

What does layered architecture offers?

Layered protocol design

 Ensures modularity
 Ensures interoperability between systems
 Reduces system design complexity

Causes overhead
 Performance cost/efficiency
 Redundant functionality
 Slow prototyping/adoption

Restricts innovation / Political decisions

Elegant wired protocols

why cross layering / net adaptability is needed in IoT?

Dynamic nature
 Limited network resources
 Network complexity
 Fast prototyping needed
Cross-layer, the only option [3]

CLASS Framework [4]

Coordination Planes based Cross-layer Framework [1]
Can Role-based modeling / Role paradigm help anyhow?
• **Role-base modeling** captures context-dependent and collaborative behavior of objects, allowing to model complex and dynamic domains.[2]

• **Mainstream object oriented modeling languages** lack ways to model the systems behavior, as it dynamically emerges through collaborating objects.[2]

• The right parameter/algorithm for a communication protocol are context-dependent.
Possible Use cases

José Irigon de Irigon (TU-Dresden)
Role based routing in DTN
Role based update in DTN

Credit: howdoeslooklike.com

- Updates under disruptions, network partitions or high delays
- Update transparent to upper layers
Role based Stack Parametrization

- Context based congestion control
- Under extreme conditions, stack change
Thank you
References

G. Carneiro, J. Ruela, and M. Ricardo.
Cross-layer design in 4g wireless terminals.

Thomas Kühn, Stephan Böhme, Sebastian Götz, and Uwe Aßmann.
A combined formal model for relational context-dependent roles.

John A. Stine.
Cross-layer design of MANETs: The only Option.

Qi Wang and Mosa Abu-Rgheff.
Cross-layer signalling for next-generation wireless systems.